The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY 1998 ## The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY 1998 Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 #### **Notice** This document has been reviewed in accordance with the U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendations for use. #### Foreword The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the nation's land, air, and water resources. Under a mandate of national environmental laws, the EPA strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet these mandates, EPA's research program, through its National Risk Management Research Laboratory (NRMRL) and National Exposure Research Laboratory (NERL), provides data and technical support for solving environmental problems, and is building a science knowledge base necessary to wisely manage our ecological resources, understand how pollutants affect our health, and prevent or reduce future environmental risks. NRMRL is the EPA's center for investigating technological and management approaches for reducing risks from threats to human health and the environment. NRMRL's research program focuses on methods for preventing and controlling pollution to air, land, water, and subsurface resources; protecting water quality in public water systems; remediating contaminated sites and groundwater; and preventing and controlling indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and information transfer to ensure effective implementation of environmental regulations and strategies. NERL is EPA's center for investigating technical and management approaches for identifying and quantifying risks to human health and the environment. Goals of NERL's research program are to (1) develop and evaluate methods and technologies for characterizing and monitoring air, soil, and water; (2) support regulatory and policy decisions; and (3) provide the science support needed to ensure effective implementation of environmental regulations and strategies. This publication has been produced as part of EPA's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients. E. Timothy Oppelt, Director National Risk Management Research Laboratory | | | | · | | |---|---|---|---|--| | | | · | , | | | | | | | · | | | | ### **Contents** | foreword | |---| | Executive Summary | | SITE Program Description Introduction Program Principles Program Implementation Program Design | | Promotion of Innovative Technologies | | nnovative Technology Highlights | | FY 98 Progress and Accomplishments | | Future Direction Introduction Technology Areas of Primary Interest MMT Program Areas of Interest Partnerships for Success Information Transfer 23 33 35 36 37 | | Appendices Appendix A - SITE Projects (Alphabetically by Developer State) Appendix B - SITE Technology Demonstration Sites (Alphabetically by Demonstration Site State) Appendix C - Publications - Information Transfer Product Descriptions Appendix D - Electronic Technical Information Resources | ## **Figures** | Figure | Pag | е | |--------|---|---| | 1 | Treatment technologies for source control chosen in Records of Decision (RODs) | 8 | | 2 | Cost savings estimated from RODs analysis by technology type | 9 | | 3 | Number of contracts awarded to SITE vendors following program participation 1 | 0 | | 4 | Countries where SITE technologies have been applied for remediation | 0 | | 5 | Number of remediation contracts awarded to SITE vendors after program participation 1 | 1 | | 6 | Share of 1,626 remediation jobs awarded to SITE Demonstration vendors | 2 | | 7 | Share of 1,248 treatability studies awarded to SITE Demonstration vendors 1 | 3 | | 8 | Distribution of in situ and ex situ SITE Demonstration projects | 2 | | 9 | Dense non-aqueous phase liquids (DNAPL) testing site roadmap: media | 1 | | | Tables | | | Table | Pag | е | | 1 | SITE demonstration projects completed in fiscal year 1998 | 3 | | 2 | SITE demonstration ongoing projects | 4 | | 3 | SITE emerging technology projects completed in fiscal year 1998 | 6 | | 4 | SITE MMT program demonstrations completed in fiscal year 1997 | 7 | | 5 | SITE future emphasis areas 1999-2002 | 9 | | 6 | SITE program projects in fiscal year 1998 2 | 9 | #### **Executive Summary** The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for more than 13 years. SITE offers a mechanism for conducting joint technology demonstration and evaluation projects at hazardous waste sites involving the private sector, EPA, and other federal and state agencies. The program provides environmental decision-makers with relevant data on new, viable remediation technologies that may have performance or cost advantages compared to conventional treatment technologies. Since the initiation of the SITE Program in 1986, cleanup of contaminated sites through the use of innovative technologies has resulted in a total inflated cost savings of over 1.9 billion dollars. During fiscal year (FY) 96, the SITE Program reviewed its approach to doing business and determined that operational shifts in the program were necessary to identify and assist in the development of the most sought-after technology types and treatment methods. Building on the strengths of the existing program, such as demonstration design, quality assurance, and technology transfer, the SITE Program shifted from a technology-driven focus to a remediation problem focus, driven by the needs of the hazardous waste remediation community. The SITE Program has the following four operating functions: (1) program planning, (2) matching priority sites with innovative cleanup solutions, (3) technology field demonstrations, and (4) information dissemination. The SITE Program's vision of the program is to remain the premiere organization in enhancing the credibility and implementation of effective innovative remediation options. The SITE Program continues to earn increased recognition as a leader in advancing innovative technology development and commercialization. The program is participating with 122 technology vendors. Through FY 98, the SITE Program has successfully demonstrated 101 technologies, six of which were completed during FY 98. Emphasis formerly placed on technologies requiring the removal of soil or groundwater (ex situ) is gravitating to in situ technologies that treat contamination in place. The SITE Program recognized this change and has emphasized the development of in situ technologies. Of the 24 ongoing or planned demonstrations, 16 are in situ, while only eight are ex situ. SITE's Monitoring and Measurement Technologies (MMT) Program has completed 36 projects to date, with 2 more in the planning stages. To ensure that the program continues to meet the needs of the remediation community, the SITE Program established a remediation stakeholder group. This group, which is composed of such agencies as the Department of Defense and the Department of Energy, reviews innovative technology applications and develops an environmental emphasis area list, which ensures that the most pressing issues are prioritized and addressed. For instance, from discussions with various governmental and private groups, SITE's Monitoring and Measurement Technologies (MMT) Program identified a need for more effective methods to evaluate soil contamination. In response to this need, the MMT Program conducted demonstrations of four soil sampling technologies and two soil gas sampling technologies in FY 97. The MMT Program is now addressing a similarly difficult problem in evaluating the performance of sediment sampling technologies in FY 99. Through such relationships with other interested parties, the SITE Program continually pursues opportunities to conduct cooperative technology demonstrations, thereby reducing expenditures and further promoting innovative technologies. These factors assist the SITE Program in attaining its primary goal – the expedited cleanup of the nation's most contaminated sites. #### **SITE Program Description** #### Introduction The Environmental Protection Agency's Superfund Innovative Technology (EPA) Evaluation (SITE) Program has successfully promoted the development, commercialization, and implementation of innovative hazardous waste site remediation and characterization technologies for more than 10 years. The SITE Program is composed of a Demonstration Program, a Monitoring and Measurement Technology (MMT) Program, an Emerging Technology Program (ETP), and information SITE offers a mechanism for transfer. conducting joint technology demonstration and evaluation projects at hazardous waste sites through the involvement of the private sector, EPA, and other
federal and state agencies. Commercialization of innovative technologies is assisted by providing potential users with high quality, unbiased performance and cost data. SITE also promotes commercial application of innovative technologies through an extensive technology transfer program. #### **Program Principles** To reduce expenditures and to remain at the forefront of innovative technology development, the SITE Program reviewed its approach to doing business in fiscal year (FY) 1996. The review indicated that operational shifts in the program were necessary to identify and assist in the development of the most sought-after technology types and treatment methods. Building on the strengths of the existing program, such as demonstration design, quality assurance, and technology transfer, the SITE Program shifted in FY 97 from a technology- driven focus to a remediation problem focus, driven by the needs of the hazardous waste remediation community. EPA's vision of the SITE Program is to remain the premiere organization in enhancing the credibility and implementation of effective innovative remediation options. In FY 98, the program continued to focus on cost-effective solutions to remediation problems. The success of the program's focus is illustrated in the strong response to solicitations for technologies, and the great interest in resource leveraging with the SITE Program from federal and state agencies, such as the Department of Defense (DOD), Department of Energy (DOE), and State Environmental Protection Agencies. The SITE Program is defined by the following four operating principles: (1) program planning, (2) matching priority sites with innovative cleanup solutions, (3) technology field demonstrations, and (4) information dissemination. #### **Program Planning** To ensure that the SITE Program continues to focus on validating the most soughtafter remediation technologies, overall program direction and strategies are now evaluated each year based on input from the user community public-sector privateand and other stakeholders. As part of the overall program planning process, the SITE Program is developing and will implement a quality management plan based on American National Standard Institute, Specifications and Guidelines for Quality Assistance for Environmental Data Collection and Environmental Technology Programs (ANSI/ASOC E4). ## Matching Priority Sites with Innovative Cleanup Solutions The SITE Program formerly identified innovative technologies, and then searched for an appropriate demonstration site. The SITE Program now solicits and prioritizes sites, and seeks appropriate technologies demonstration at these sites. Matching a site with a technology is a flexible process, and a site owner has the option of evaluating one or more technologies. If no specific technology or vendor is identified by a chosen site. technologies and vendors are matched to sites by the SITE Program and other interested parties, which may include state and federal regulators and other public representatives. An important aspect of technology selection is that more than one technology may be introduced for review and demonstration. This aspect allows for matching the most appropriate and feasible technology to a particular site. General technology needs of the user community are identified by soliciting input working from groups, forums. personal communication. and hazardous publications. With this continuous input, the SITE Program will continue to focus on the needs of the remediation community and the more pressing problems at contaminated sites. #### Technology Field Demonstrations Field demonstrations are conducted to provide quality data to evaluate technology performance. The resulting data and reports are intended for use by the site owners and state and federal decision-makers in evaluating remediation options and for adding credibility to technology vendors promoting their processes. SITE Program technology demonstrations are increasingly conducted in partnership with other EPA offices, other federal agencies, states, private industry, and universities. These partnerships not only reduce the overall costs of demonstrations to EPA, but accelerate remediation of some of the most problematic sites at federal and state facilities. One example of these partnerships is a cooperative agreement with the Ohio EPA at the Crooksville/Roseville Pottery site. This site is contaminated with lead from waste disposal practices associated with pottery production operations. Concurrent SITE demonstrations were performed at the site to assess the ability of two technologies to reduce bioavailable lead, and therefore the associated health risks at the site. #### Information Dissemination As part of its improvement process, the SITE Program recognized the need for expediting the progression of demonstration data from the program to the user community. The expansion of its electronic information sources was identified by the SITE Program as the most effective means for accomplishing this task. As a result, the amount of information on innovative technologies available through electronic sources is growing at a rapid pace, with the World Wide Web as the primary conduit. The development of technical documents within the SITE Program is a dynamic process, with a continual drive towards presenting data in its most usable form. A primary product of this effort is the summarization of information on a variety of technologies or applications for a specific area of interest. This information allows the user community to compare the technical capabilities of these technologies, expected cost for the application, and the compliance of the technology with regulatory guidelines. Meetings and conferences continue to be an important factor in the dissemination of technical information generated by the SITE Program and were utilized to their full potential during FY 98. These forums offer face-to-face discussion among the user community, technology developers, and the SITE Program, which serves to generate ideas for future development and use of innovative technologies. #### **Program Implementation** SITE is a partnership between the public and private sectors, where the costs and responsibilities are shared by EPA, hazardous waste site owners, and technology developers. EPA enters into cooperative-type arrangements with site owners and technology developers, under which innovative technologies are demonstrated at selected hazardous waste sites. EPA evaluates the new technologies based on the demonstration results, and compiles and publishes engineering, performance, and cost data intended to aid in decisions regarding the use of the technologies at similar hazardous waste sites. The program generates credible and unbiased technology cost and performance data project needed bv remedial managers. consultants, and other environmental decision EPA promotes easy access to this makers. information, allowing project managers to make timely decisions in selecting cleanup remedies. Historically, one of the greatest factors inhibiting the use of innovative cleanup technologies has been the lack of adequate and credible cost and performance data during technology development at or near the commercial scale. Understandably, many site owners are unwilling to risk the use of innovative technologies without assurance of the technology's success. By addressing this need, SITE has aided in the first-time field use of many technologies, often resulting in wide acceptance of a particular technology. Providing credible, unbiased cost and performance data remains the foundation of SITE. #### **Program Design** The SITE Program is comprised of the following key elements: #### ✓ Demonstration Program Evaluates and verifies cost and performance of promising innovative technologies at selected hazardous waste sites to provide reliable performance, cost, and applicability information for site cleanup decision-making #### ✓ Monitoring and Measurement Technology Program Evaluates technologies that detect, monitor, and measure hazardous and toxic substances to provide more costeffective methods for producing real-time data during site characterization and remediation #### ✓ Emerging Technology Program Fosters the research and development of innovative technologies for remediation of hazardous waste sites #### ✓ Information Transfer Activities Disseminates technical information, including engineering, performance, and cost data, to assist in removing barriers for use of innovative and alternative technologies #### **Demonstration Program** In the Demonstration Program, innovative cleanup technologies are field tested on hazardous waste materials. SITE demonstrations are conducted at hazardous waste sites, such as those on the National Priorities List (NPL); Brownfields at non-NPL sites; or under simulated hazardous waste site conditions at developer or federal test and evaluation facilities. Engineering, performance, and cost data are gathered on innovative technologies for review by potential users to evaluate their applicability to similar waste sites or to compare their effectiveness and costs to other alternatives. Data collected during each field demonstration are used to assess the performance of the technology, the potential need for pre- or postprocessing of the waste, applicable types of wastes and contaminated media (for example, soil. sludge. water. sediment). operating problems, limitations. and approximate capital, operating, and maintenance costs. The selection of sites for the program is based on the research needs of EPA, other federal agencies, and the technology user community. The SITE Program annually solicits applications participation for the Demonstration Program from interested private firms and federal and state agencies with responsibility cleanup operations for hazardous waste sites. Cooperative arrangements or Memoranda of Understanding form the
relationship between the SITE Program and the parties responsible for the host site. No contractual agreement is arranged and no funds are given to the site as part of this arrangement. SITE provides in-kind service in the form of technical demonstration, testing, sampling/ analytical services, and report writing. Host site owners (see Appendix B for sites categorized by state and location) are responsible for providing necessary data related to the hydrogeology and other site conditions, results of feasibility studies, and results of waste analyses. The owner is responsible for all logistical requirements for the demonstration, such as availability of utilities, access to land area at the site large enough for equipment setup, elimination or restriction of geographical or geological hindrances, security provisions, and personnel safety provisions. Technology developers whose systems are demonstrated are responsible for transporting equipment to the selected site, operating their systems, and removing equipment from the site upon completion of the demonstration. **EPA** financially and technically responsible for project planning, sampling and analysis, quality assurance and quality control, preparing evaluation reports, and disseminating cost and performance information to environmental managers. EPA also prepares evaluation reports, bulletins, project summaries, and videotapes to document demonstration activities. These reports and videotapes evaluate available information on the technology and analyze its overall applicability to other site characteristics. waste types, and waste matrices. Reports also include testing procedures and the quality assurance and quality control standards. As of September 30, 1998, the Demonstration Program included 127 accepted, ongoing, and completed demonstrations. These technologies are presented alphabetically in Appendix A, according to the state in which the developer's business is located. #### Monitoring and Measurement Technology Program The MMT Program provides developers of innovative hazardous waste measurement and monitoring technologies with an opportunity to demonstrate a technology's performance under actual field conditions. Following the demonstration, EPA compiles the results and prepares a report summarizing the findings. Report distribution may enhance market acceptance or define new applications for the technology. The purpose of the MMT Program is to accelerate the acceptance and use of effective innovative measurement and monitoring technologies in the field. These technologies include new or modified technologies that can detect, monitor, and measure hazardous and toxic substances in the subsurface, soil, sediment, waste materials, and surface waters. Technologies include chemical sensors for in situ (in place) measurements, groundwater sampling devices, soil and core sampling devices, soil gas or fluid samplers, laboratory and field-portable analytical equipment, and other systems that support field sampling or data acquisition and analysis. MMT Program technologies can be used to accurately assess the degree of contamination at a site, provide data to evaluate potential effects on human health and the environment, supply data to assist in selecting the most appropriate cleanup action, and monitor the effectiveness of a remediation technology. The selection process places high priority on technologies that provide more cost-effective, faster, and safer methods than conventional technologies for producing real-time or near-Innovative technologies are real-time data. demonstrated under field conditions and results are compiled. evaluated, published, disseminated by the Office of Research and Development (ORD). The primary objectives of this portion of the SITE program are to: - Test field analytical technologies that enhance monitoring and site characterization capabilities - Identify the performance attributes of new technologies to address field characterization and monitoring problems in a more cost-effective and efficient manner - Prepare protocols, guidelines, and methods that enhance the acceptance of these technologies for routine use Evaluations or demonstrations have now been completed for 36 technologies in the MMT Program. The MMT Program is administered by ORD'S National Exposure Research Laboratory at the Environmental Sciences Division in Las Vegas, Nevada. Technologies demonstrated under the MMT Program are listed in Appendix A. #### **Emerging Technology Program** The ETP fosters the research and development of innovative technologies for remediation of Superfund and other hazardous waste sites. Technologies enter the program at the bench- or pilot-scale stage of development. EPA provides developers the opportunity to advance a technology from bench- and pilot-scale testing to demonstration. The SITE ETP was discontinued in 1996 due to reductions in funding to the Superfund research and development budget. The SITE Program continues to honor commitments to technology developers currently in the ETP but no new technologies were admitted into the program after 1995. Technologies were solicited yearly for the ETP through requests for proposals. Selected candidates were invited to submit a Cooperative Agreement application that underwent full technical review. Applications were considered for a Cooperative Agreement with a duration of up to 2 years, with funding of \$150,000 per year with a \$300,000 maximum. Second year funding depended on significant progress during the first year. Upon completion of the ETP, technologies were considered for the Demonstration Program. technology vendors chose to fully commercialize their technologies after participating in the ETP. #### Information Transfer Activities Information transfer activities that valuable information about innovative technologies from the Demonstration and MMT Programs is disseminated through various communication mechanisms, such as technical networking, publications, and electronic distribution. The most important products are the published technical reports for each field demonstration. All such activities promote the awareness and use of innovative technologies for assessment and remediation at Superfund sites. The primary goal of information transfer is to promote communication among environmental stakeholders requiring up-to-date technical information. Mechanisms for providing information on technology demonstrations and the SITE Program include the following: - Program-specific brochures and exhibits - Conferences, workshops, and technical working groups - Publications and videotapes (see Appendix C) - Electronic media, including the Internet and electronic bulletin boards - Technical assistance to regions, states, and remediation contractors - ► Technology seminars Printed and electronic documents are accessible through the World Wide Web at the Environmental Technologies Verification (ETV) Web site (http://www.epa.gov/ORD/SITE) and a site supported by the EPA Office of Solid Waste and Emergency Response's Technology Innovation Office (TIO) (http://clu-in.org). Several technology databases summarize innovative treatment information about technologies and associated vendors. These databases may serve as tools in identifying potential technology demonstration candidates or serve as directories for technology vendors. Examples of these databases include, but are not limited to, Remediation and Characterization Innovative Technologies (REACHIT) online (http://epareachit.org), system Bioremediation in the Field Search System Descriptions of the databases and publication ordering information are provided in Appendix D. #### **SITE Program Accomplishments and Vendor Benefits** #### **Promotion of Innovative Technologies** SITE is recognized as one of EPA's principal programs to advance innovative site monitoring, characterization, and cleanup technologies, with the potential to treat hazardous wastes more efficiently, less expensively, and more safely than many existing methods. SITE's mission is to promote the development and application of innovative technologies that reduce or eliminate risks to human health and the environment due to contamination. The goal of the program is to interact with the technology user community, understand its needs, integrate those needs with EPA's research mission, and expeditiously address those needs. Identifying and responding to the technology needs of the remediation community is the driving force behind today's SITE Program. SITE is a Recognized Leader in Advancing Innovative Technology Over the past 13 years, SITE has earned increased recognition as a leader in advancing development technology innovative commercialization and has participated cooperatively with more than 122 technology developers. Through FY 98, the SITE Program has successfully demonstrated 101 technologies, six of which were completed during FY 98. These demonstrations have provided tremendous amount of information on the applicability performance, costs, and innovative cleanup technologies, which greatly assists managers of environmental remediation projects in developing appropriate and effective cleanup solutions. The types and numbers of innovative technologies selected for remediation at Superfund sites increased significantly after the passage of the Superfund Amendments and Reauthorization Act (SARA). While rarely used during the early 1980s, innovative technologies comprised approximately one-quarter of the total number of technologies selected for Superfund remediation projects between FY 86 and FY 87. Since then, the number has continued to rise, indicating increased credibility and confidence in a number of innovative treatment technologies. Figure 1 shows that more innovative versus conventional technologies were selected in Records of Decisions (RODs-official records documenting selection of Superfund site cleanup methods) signed during FY 93 through FY 97.
Although SITE is only one contributing factor in increasing innovative technology selection, the program has played a significant role in this activity. ## **Historical Program Cost Savings and Vendor Contracting** Since its establishment in 1986, the SITE Program has assisted in the development and use of innovative technologies, resulting in substantial cost savings for cleaning up contaminated sites. The SITE Program has assisted vendors in advancing innovative technologies from the development phase to full-scale application, and has promoted greater acceptance of these technologies. The following subsections provide examples of the financial success of the SITE Program. Figure 1. Treatment technologies for source control chosen in RODS (Adapted from: U.S. EPA, Office of Solid Waste and Emergency Response, Innovative Treatment Technologies Anual Status Report, Eighth Edition, EPA/542/r-96/010, November 1997, and U.S. EPA, Office of Solid Waste and Emergency Response, Innovative Treatment Technologies Annual Status Report, Ninth Edition, S42-R-99-001, April 1999) #### SITE Program Accomplishments Figure 1 displays the number of innovative and established treatment technologies selected in RODs by year. This figure shows that interest in innovative technologies as a sound remediation action increased in the early 1990s. Since 1993, the use of innovative technologies has outpaced that of established technologies, resulting in dramatic cost savings. During 1996 and 1999, the SITE Program collected information from signed RODs (dated 1993-1997) in all 10 EPA Regions that selected an innovative technology as the remedy. These technologies include thermal desorption, bioremediation, and in situ soil flushing. The data compiled by the SITE Program allowed environmental managers to compare innovative technologies to conventional technologies, especially with respect to cost. This time period was selected for evaluation because more innovative technologies than conventional technologies were selected in RODs signed in each of these years. Documentation was obtained from updated data on a total of 142 RODs that selected innovative technologies for part or all of the remediation. EPA guidance recommends that ROD estimates assess remedial alternatives with an accuracy of +50 percent to -30 percent. Of the 142 RODs that selected innovative technologies, 71 had sufficient information to make a cost comparison between the selected technology conventional technology. Cost savings realized by using innovative technologies for the 71 RODs was estimated at \$2.1 billion in end of year 1998 dollars, with an average percent savings per site of over 70 percent. Only 11 of the 71 RODs reported that the innovative technology was more expensive than or equal to the established technology. To estimate SITE Program net benefits, the FY 93-FY 97 RODs and the SITE Program budget were inflated to the end of 1998 using Consumer Price Index (CPI) inflation figures. The total inflated cost savings for RODs from 1993-1997 was \$2.1 billion, and the total inflated SITE Program budget from 1986-1998 was \$170 million. This comparison represents an estimated inflated cost savings of over \$1.9 billion for various site cleanups. Figure 2 shows a breakdown of savings by technology type. Soil vapor extraction (SVE) showed the highest savings of over \$937 million, followed by \$479 million for bioremediation. SVE was one of the initial technologies accepted into the SITE Program (in the late 1980s), and large savings would therefore be expected from this technology. Solvent extraction, vitrification, and thermal desorption each accounted for over \$100 million in savings. #### Historical Vendor Benefits Technology vendors are a central part of the SITE Program, providing services for sites requiring clean-up solutions. Vendors experience various benefits by participating in the SITE Program, namely increased market share and recognition. Increased acceptance of innovative technologies is demonstrated by the level of commercial activity experienced by SITE Program vendors. For example, 1998 vendor information indicated that vendors completed SITE demonstration projects reported a total of 1,582 commercial remediation contracts, and 1,161 treatability studies (Figure 3). As part of a SITE Program evaluation in 1998, 46 provided information vendors revenues. Following regarding company participation in the SITE Program, 64 percent of vendors were awarded commercial remediation jobs using technologies demonstrated in the SITE Program. Ten percent of the vendors were awarded more than 10 contracts each. 1998, 38 percent of the SITE vendors reported one or more international contracts, more than doubling the 17 percent from 1994 data. SITE vendors identified 33 countries where jobs were contracted (Figure 4). Figure 5 provides a historical perspective of growth in the number of contracts awarded to SITE vendors since 1990. Figure 2. Cost savings estimated from RODs analysis by technology type (millions of end-of-year 1998 dollars) Figure 3. Number of contracts awarded to SITE vendors following program participation (Source: 1998 vendor information) Figure 4. Countries where SITE technologies have been applied for remediation. (Shaded countries are those where SITE vendors have applied an innovative technology) Figure 5. Number of remediation contracts awarded to SITE vendors after program participation (Source: 1998 vendor information) The 1998 vendor information has been broken down by technology type to ascertain which technologies demonstrated the greatest commercial success. Figure 6 shows the share by technology type of the 1,626 remediation contracts awarded to vendors. It is clear from this chart that soil vapor extraction and bioremediation technologies have had the most commercial success. This trend from the vendor information is consistent with the RODs analysis results which are shown in Figure 2. Figure 7 displays the distribution of the 1,248 treatability studies that were awarded to SITE vendors. This graph shows that solidification/stabilization technologies (35%), and soil vapor extraction (25%), have received the largest number of studies. In contrast to the remediation contracts, treatability studies were more evenly distributed among technology types. Information was obtained in 1998 from 16 vendors in the MMT Program. This information clearly demonstrated the benefits that vendors receive from the program, indicating that 50 percent of the vendors sold more than 25 units since their demonstration in the SITE Program. Over 60 percent of the vendors indicated that vendors' technologies were used on international remediation projects. In total, the MMT vendors reported selling over 2,400 units on over 900 jobs, including 48 international jobs. Overall, vendor information shows that SITE vendors in the Demonstration and MMT Programs are receiving remediation or characterization work for the demonstrated technologies. There is also a clear connection between the commercial success of particular remediation technology types (that is, SVE and bioremediation) as measured from vendor information, and the cost savings determined from the RODs analysis. An example of the application of an innovative technology at a Superfund site follows. ## **Longhorn Army Ammunition Plant (LHAAP) Burning Ground #3 Superfund Site** The LHAAP site was used for treatment, storage, and disposal of combustible solvent wastes with associated activities including open burning, incineration, and evaporation. primary contaminants at the site were trichloroethylene (TCE) and methylene chloride. Initial site studies indicated that 50,000 cubic yards (cy) of soil would need to be treated. Thermal desorption (TD), a SITE Program technology, incineration and were technologies most suited to remediation. Initial cost analyses from the 1996 ROD estimated a unit cost of \$204 per cy for TD, and \$524 per cy for incineration. TD was chosen to remediate the site based on its cost effectiveness, and its ability to meet required treatment goals. additional characterization became available, the scope of the project was reduced, and only 32,293 cy of contaminated soil was treated. The TD unit operated from February until December 1997, and achieved the treatment objectives for concentration reductions of organic compounds. Total project costs for the remediation were \$4,886,978, which works out to \$151 per cy. The unit treatment cost is a 26 percent savings over the initial TD cost estimated in the ROD, and a 71 percent savings over the estimated cost for incineration. These unit cost savings are particularly remarkable in light of the fact that a smaller volume of waste material was treated at the site due to a change in scope. Figure 6. Share of 1,626 remediation jobs awarded to SITE Demonstration vendors by technology type based on 1998 vendor information. Figure 7. Share of 1,248 treatability studies awarded to SITE Demonstration vendors by technology type based on 1998 vendor information #### **Innovative Technology Highlights** #### **SITE Program Case Studies** This section presents case studies of innovative remediation technologies for vendors that have participated in the SITE Program through either the Demonstration Program (Case Studies 1 through 4) or the MMT Program (Case Study 5). The case studies provide brief descriptions on the use and status of various technologies and, where available, general information on the cost of applying each technology. These case studies represent the SITE Program's approach to promoting innovative technologies by identifying In response to user needs, the user needs. Demonstration Program assessed the performance of an electrokinetic technology for DNAPL contamination, a phytoremediation technology for lead contamination, bioremediation of spent ore wastes, and a barrier to isolate radioactive wastes (Case Studies 1 - 4). The
environmental community is also in need of low-cost, accurate methods for soil and soil gas sampling. The MMT Program has addressed this issue by evaluating the performance of six soil and soil gas samplers at two sites with differing soil types (Case Study 5). The technologies presented in these case studies are typical of the SITE Program and represent SITE's remediation problem focus, driven by the needs of the hazardous waste community. These technologies represent real or potential solutions to actual cleanup problems faced by the environmental community. Case Study 1: Lasagna[™] In Situ Soil Remediation (Monsanto Company, DOE, and EPA National Risk Management Research Lab) The LasagnaTM process combines electrokinetics with treatment layers that are installed directly into the contaminated soil to form an integrated, in situ remedial process. The process uses an outer layer of charged electrodes, which create an in situ electric field to move contaminants through the treatment layers. The design of treatment layers depends on the type of contamination present at the site. Past designs have used granular activated carbon and iron filing treatment layers to treat chlorinated solvents. The LasagnaTM process can remove contaminants from soil in the following ways: - Creating treatment zones in close proximity to one another, and converting them into sorption/degradation zones by adding sorbents, catalysts, microbes, oxidants, and buffers. - Using electrokinetics to transport contaminants from the soil into the treatment zones for sorption/degradation. #### Waste Applicability The process is designed to treat organic and inorganic contaminants and mixed wastes in groundwater and soil. A vertical treatment zone is typically used for shallow contamination, within 50 feet of the ground surface. A horizontal configuration, using hydraulic fracturing or related methods, is capable of treating deeper contamination. #### Status The vertical configuration of the LasagnaTM process was accepted into the SITE Demonstration Program in 1995 as part of the White House Rapid Commercialization Under the SITE Program, with Initiative. additional funding from the DOE, it was tested for 120 days in May 1995 on soil contaminated with TCE at DOE's Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Sampling and analysis of pre- and post-treatment soils indicated a 98 percent removal of TCE from clayey soil, from initial contamination levels around 100 parts per million (ppm). Α second test of the vertical configuration was initiated at PGDP to treat TCE-contaminated soil to a depth of 45 feet ground surface. **Complications** below encountered during the operation included higher than expected significantly concentrations, and complex hydrogeology. The overall TCE removal efficiency was in the range of 95 percent for 1 pore volume of water flow to over 99 percent for 2.6 pore volumes between the treatment zones. Based on the success of this test, DOE has recommended using the process to clean up the rest of the site. ## Case Study 2: Phytoextraction (Phytotech) Phytotech uses specially selected and engineered plants to treat soil and water contaminated with toxic metals such as lead and cadmium, as well as radionuclides. The treatment of soils or sediments with this technology is referred to as phytoextraction. Phytoextraction offers an efficient, cost-effective, and environmentally friendly way to clean up heavy metal contamination. Plants are grown in situ on contaminated soil and harvested after toxic metals accumulate in the plant tissues. The degree of accumulation varies with several factors, but can be as high as 2 percent of the plants' aboveground dry weight, leaving clean soil in place with metal concentrations that are less than regulatory cleanup levels. After accumulation in the plant tissues, the contaminant metal must be disposed of, but the amount of disposable biomass is a small fraction of the amount of soil treated. For example, excavating and landfilling a 10-acre site contaminated with 400 parts per million (ppm) lead to a depth of 1 foot requires handling roughly 20,000 tons of lead-contaminated soil. Phytoextraction of the same site would require disposal of around 500 tons of biomass - about 1/40 of the soil cleaned. In the example cited. six to eight crops would typically be needed, with three or four crops per growing season. #### Waste Applicability Phytotech's phytoextraction technology can be used to clean soil or sediments contaminated with lead, cadmium, chromium, cesium, strontium and uranium. Phytoremediation of other metals such as arsenic, zinc, copper, and thorium is in the research stage. #### Status Under the SITE Program, Phytotech has demonstrated its technology at a former battery manufacturing facility in Trenton, New Jersey. Two crops were planted and harvested in late summer 1998 to remediate lead contamination in soil at the site. Phytotech has conducted several field demonstrations of its rhizofiltration technology for the removal of (1) cesium/strontium at Chernobyl, and (2) uranium from contaminated groundwater at a DOE site in Ashtabula, Ohio. At Chernobyl, sunflowers were shown to extract 95 percent of the radionuclides from a small pond within 10 days. At the Ashtabula site, Phytotech ran a 9-month pilot demonstration during which incoming water containing as much as 450 parts per billion (ppb) of uranium was treated to 5 ppb or less of uranium. Case Study 3: Spent Ore Bioremediation (Pintail Systems, Inc.) This Pintail Systems technology uses microbial detoxification of cyanide in heap leach processes to reduce cyanide levels in spent ore The biotreatment and process solutions. populations of natural soil bacteria are grown to elevated concentrations, and are then applied to spent ore by drip or spray irrigation. Process solutions are treated with bacteria concentrates in continuous or batch applications. This enhance metal method mav also remineralization, reducing acid mine drainage and enhancing precious metal recovery to offset treatment costs. Biotreatment of cyanide in spent ore and ore processing solutions begins by identifying bacteria that will grow in the waste source and that use the cyanide for normal cell building reactions. Native isolates are ideally adapted to the spent ore environment, the available nutrient pool, and potential toxic components of the heap environment. The cyanide-detoxifying bacteria are typically a small fraction of the overall population of cyanide-tolerant species. For this reason, native bacteria isolates are extracted from the ore and tested for cyanide detoxification potential as individual species. Any organisms demonstrating detoxification potential in flask cyanide decomposition tests are preserved and submitted for bioaugmentation. Bioaugmentation of the cyanide detoxification population eliminates nonworking species of bacteria and enhances the natural detoxification potential by growth in waste infusions and chemically defined media. The working population of treatment bacteria is grown in spent ore infusion broths and process solutions to adapt to field operating conditions. The cyanide in the spent ore serves as the primary carbon or nitrogen source for bacteria nutrition. Other required trace nutrients are provided in the chemically defined broths. The bacterial consortium is then tested on spent ore in a 6-inch-by-10-foot column in the field or in the laboratory. The column simulates leach pile conditions, so that detoxification rates, process completion, and effluent quality can be verified. Following column tests, a field test may be conducted to verify column results. The spent ore is remediated by first setting up a stage culturing system to establish working populations of cyanide-degrading bacteria at the mine site. Bacterial solutions are then applied directly to the heap using the same system originally designed to deliver cyanide solutions to the heap leach pads. Cyanide concentrations and leachable metals are then measured in heap leach solutions. This method of cyanide degradation in spent ore leach pads degrades cyanide more quickly than methods which treat only rinse solutions from the pad. #### Waste Applicability The spent ore bioremediation process can be applied to treat cyanide contamination, spent ore heaps, waste rock dumps, mine tailings, and process water from gold and silver mining operations. #### Status The technology was accepted into the SITE Demonstration Program in 1994. A demonstration was successfully conducted at Battle Mountain, Nevada to test the effectiveness of the bioremediation process to detoxify cyanide wastes. In addition, PSI has completed two full-scale cyanide detoxification projects. Case Study 4: Cryogenic Barrier (Arctic Foundations, Inc.) Long-term containment and immobilization of hazardous wastes using ground freezing technology is a relatively new field, even though ground freezing has been used as a temporary construction aid for several years. Ground freezing is ideally suited to control waterborne pollutants, since changing water from a liquid to a solid has an obvious immobilizing effect. The challenge for conventional ground freezing technologies is to be technically and economically viable in the long-term. Arctic Foundations, Inc. (AFI), has developed a ground freezing technology that can be used as a long-term solution for containing and immobilizing hazardous wastes. A frozen barrier is created by reducing the ground temperature around the waste to the appropriate freezing temperature and subsequently freezing the intervening waste. The ground freezing process is naturally suited to controlling hazardous waste because in-ground moisture is transformed from serving as a potential waste mobilizing agent to serving as a protective agent. A typical containment system consists of multiple thermoprobes, an active (powered) condenser, an interconnecting piping system, a
two-phase working fluid, and a control system. The thermoprobes (AFI's heat removal devices) and piping are inserted into the soil at strategic locations around and sometimes underneath the waste source, depending on the presence or absence of a confining layer. Two-phase working fluid circulates through the piping and reduces the temperature of the surrounding soil, creating a frozen barrier around the waste source. The thermoprobes may be installed in any position and spacing to create a frozen barrier wall of almost any shape and size. #### Waste Applicability The cryogenic barrier can provide subsurface containment for a variety of sites and wastes, including the following: underground storage tanks; nuclear waste sites; plume control; burial trenches, pits, and ponds; in situ waste treatment areas; chemically contaminated sites; and spent fuel storage ponds. The barrier is adaptable to most geometries; drilling technology presents the only constraint to applying the technology at waste sites. #### Status The SITE demonstration of the freeze barrier was conducted over a 5-month period in 1998 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The demonstration was conducted to evaluate the barrier's ability to contain radionuclides from the ORNL Waste Area Homogeneous Reactor Experiment pond. The system's effectiveness was evaluated through the performance of a groundwater dye Phase I of the tracing investigation. demonstration included a background study conducted to determine the presence of natural fluorescence and existing dyes in groundwater at the site. The purpose of the background study was to select a dye that was non-detectable in the background, for use during the dye tracing investigation. During Phase II, the dye was injected into a standpipe located within the confines of the frozen barrier. Water samples and charcoal packets were then collected at predetermined sampling points outside the barrier wall to determine the presence or absence of dye in groundwater, springs, or seeps. The freeze barrier wall was effective in impeding groundwater recharge into the containment area, with the exception of a breach in the northwest corner of the pond due to the presence of a subsurface pipe that was left in place after the pond closed. ## Case Study 5: Subsurface Soil and Soil Gas Samplers The MMT Program conducted field tests of four soil and two soil gas sampling technologies in May and June 1997. The sampling technologies were demonstrated at two sites: the Small Business Administration (SBA) site in Albert City, Iowa, and the Chemical Sales Company (CSC) site in Denver, Colorado. These sites were chosen because of the wide range of volatile organic compounds (VOC) concentrations detected at the sites and because each has a distinct soil type. The SBA site is composed primarily of clayey soil, and the CSC site is composed primarily of medium- to fine-grained sandy soil. The purpose of the field tests was to assess the performance of each technology as compared to a standard subsurface sampling method (hollow-stem auger drilling and split-spoon sampling for the soil samplers, and active soil gas sampling for the gas samplers). Four soil sampling technologies were demonstrated at the two test sites: JMC Environmentalist's Subsoil Probe; Simulprobe® Core Barrel Sampler; Geoprobe Large-Bore Soil Sampler; and the AMSTM Dual Tube Liner Sampler. Two soil gas sampling technologies were demonstrated: EMFLUX* Soil Gas Gore-Sorber® Investigation System; and Screening Survey Passive Soil Gas Sampling System. Each of these technologies, and the results of the demonstration, are described below. #### JMC Environmentalist's Subsoil Probe (ESP) JMC Environmentalist's Subsoil Probe consists of a sampling tube assembly, the ESP body, and a jack used to assist in sample retrieval. The sampler can be advanced using manual or direct-push methods. The sampler has been used to collect samples of sandy and clayey soil contaminated with high concentrations of VOCs. The sampler can also collect samples for polychlorinated biphenyls, polynuclear aromatic hydrocarbons, pesticides, and metals analyses. Demonstration results indicate that the ESP sampler had higher sample recoveries in both the clayey soil present at the SBA site and in the sandy soil present at the CSC site than the sampling methods. standard concentrations in samples collected with the ESP sampler from the SBA site significantly differed from concentrations in samples collected using the standard methods; however, this difference was not observed for samples collected from the Sample integrity using the ESP CSC site. sampler was preserved in highly contaminated soil. The sampler's reliability and throughput were generally better than those of the standard methods. Costs for the ESP sampler were much lower than costs related to the standard sampling methods. #### Simulprobe[®] Core Barrel Sampler The SimulProbe® Technologies, Inc. (SimulProbe®), core barrel sampler consists of a split core barrel similar to a split-spoon sampler, a drive shoe, and a core barrel head. The sampler is constructed of steel, and is capable of recovering a discrete sample 1.25 inches in diameter and 27 inches long. The SimulProbe® core barrel sampler can be used to collect unconsolidated, subsurface soil samples at depths that depend on the capability of the advancement platform. The sampler can be advanced into the subsurface using a direct-push platform, drill rig, or manual methods. Demonstration results indicate that the core barrel sampler had higher sample recoveries and yielded samples with higher VOC concentrations in the clayey soil present at the than the standard methods. SBA site Conversely, the sampler had lower recoveries and yielded samples with lower VOC concentrations than the standard methods in the sandy soil present at the CSC site. Sample integrity using the core barrel sampler was not preserved in highly contaminated soil, and the use of sample liners was found to be required to The core barrel preserve sample integrity. sampler's reliability and throughput were not as good as those of the standard methods; however, the developer claims that the sampler used during the demonstrations was incorrectly manufactured. Costs for the core barrel sampler were lower than costs related to the standard sampling method. #### Geoprobe[®] Large-Bore Soil Sampler (LBS) The LBS Sampler is a single tube-type, solid barrel, closed-piston sampler. It is designed to be driven by the Geoprobe percussion probing machine to collect discrete interval soil samples but can be used for continuous coring if needed. This direct-push sampler is for use in unconsolidated soils. It is capable of recovering a soil core 22 inches long by 1-1/16 inches in diameter. The LBS sampler can be used to collect soil samples for both organic and inorganic analytes. The LBS sampler demonstration results indicate that the it can provide useful, cost-effective samples for environmental problem solving. In some cases, however, VOC data collected using the LBS Sampler may be statistically different from VOC data collected using the reference sampling method. The integrity of a lined sample chamber may not be preserved when the sampler is advanced through highly contaminated zones in clayey soils. ## Art's Manufacturing and Supply - AMS[™] Dual Tube Liner Sampler (DTL) The AMSTM sampler consists of two steel tubes of differing diameters designed so that the two tubes fit within one another. The direct-push drill rig used to mount the dual tube liner sampler must be a 0.75-ton or heavier pickup truck supplied by the buyer or a custom-made truck assembled by AMS. The DTL sampler can be used to collect unconsolidated, subsurface soil samples at depths that depend on the capability of the direct-push advancement platform. The sampler has been used to collect samples of sandy and clayey soil contaminated with high concentrations of VOCs. Demonstration results indicate that the DTL sampler had higher sample recoveries in the clayey soil present at the SBA site than the standard methods. Conversely, the sampler had lower recoveries than the standard methods in the sandy soil present at the CSC site. VOC concentrations in samples collected with the dual tube liner sampler did not significantly differ statistically from concentrations in samples collected using the standard methods. Sample integrity using the DTL sampler was preserved in highly contaminated soil. The sampler's reliability and throughput were generally as good as those of the standard methods. Costs for the dual tube liner sampler were lower than costs related to the standard sampling methods. #### EMFLUX® Soil Gas Investigation System Quadrel's EMFLUX® System is a passive, near-surface investigative technology capable of identifying buried VOCs and semivolatile organic compounds (SVOC) at concentrations in the low parts per billion range. The EMFLUX® System has been employed with great effectiveness in detecting a broad range of VOCs and SVOCs in soil, groundwater, and air. The technology has also been successful in identifying and mapping methane, non-methane landfill gases, mercury, certain types of high explosives, and chemical surety materials. The demonstration results indicate that the EMFLUX® system can provide useful, costeffective data in clayey and sandy soils. The sampler identified target VOCs and may be able to detect lower concentrations of VOCs in soil gas than the reference method. The results of the demonstration did not indicate consistent proportional comparability between the EMFLUX® data and the reference method's data. The EMFLUX® system is operational and has been used on 350 major projects in 46 U.S. states, Guam, Canada, Great Britain, South America, Poland, and the Czech Republic. #### Gore-Sorber[®] Screening Survey Passive Soil Gas Sampling System The GORE-SORBER® Screening Survey employs the use of
patented passive soil vapor sampling devices (GORE-SORBER® Modules), which are made of an inert, microporous, expanded polytetrafluoroethylene membrane. The membrane restricts transfer of soil and liquid, but allows the soil gases to move across the membrane for collection onto engineered These sorbents are designed to sorbents. minimize the effects of water vapor and to detect a broad range of VOCs and SVOCs. GORE-SORBER® Screening Surveys have been used successfully at sites for determining subsurface areas impacted by VOCs and SVOCs. Organic compounds commonly detected include halogenated solvents, straight- and branchedchain aliphatics, aromatics, and polycyclic aromatic hydrocarbons. The SITE demonstration showed that the GORE-SORBER® Screening Survey is more sensitive than active soil gas sampling, and therefore more accurate in terms of detecting and reporting low concentrations of some compounds. The technology demonstration also revealed that this survey is more accurate when the soil conditions would otherwise restrict the use of active soil gas methods, for example, where the soil is very dense or nearly saturated. Additionally, this sorbent based method provides a more robust system for sample collection and analysis for those projects that have more stringent data quality objectives. #### FY 98 Progress and Accomplishments #### **Demonstration Program** The objective of the Demonstration Program is to conduct field demonstrations and high-quality performance verifications of viable remediation technologies at sites that pose high risks to human health and/or the environment, are common throughout a region or the nation, or where existing remediation methods are inadequate or too costly. The SITE Program applications annually from those solicits responsible for cleanup operations at hazardous waste sites. Respondents and these individuals may suggest one or more technologies. A panel of SITE Program scientists, engineers, and associated environmental experts reviews the applications to identify those technologies that best represent solutions for the most pressing environmental problems. The resulting data and reports are intended for use by decision-makers in selecting remediation options and for increasing credibility in innovative applications. The need for credible and reliable data for innovative technologies remains significant. For example, of the 80 RODs signed in 1994 that selected established technologies as the best alternative, 16 (or 20 percent) considered an innovative technology as an alternative for remediation of the site. The majority of the RODs indicated that innovative technologies were not chosen due to a lack of verified performance and implementability. The SITE Program serves to fill this need for credible evaluations so that more effective, cost-efficient methods can be used on remediation problems. During the first 10 years of the SITE Program, an emphasis was placed on innovative technologies for permanent treatment that usually required the removal of soil or groundwater. Most field demonstrations during this period in the program's history involved ex situ physical/chemical and thermal technologies that could be field tested in a matter of days or weeks. The need for innovative, in situ technologies that provide more cost-effective approaches, provide less secondary waste, and are less intrusive will continue to increase. The SITE Program has recognized this need and has emphasized the development of in situ technologies. As shown in Figure 7, 66 completed SITE projects have been ex situ and 35 in situ. Of the 24 ongoing or planned demonstrations, 16 are in situ, while only eight are ex situ. Field demonstration and evaluation of in situ technologies may require several months or years of data collection. Based on the SITE Program's increased emphasis on in situ technologies, the number of ongoing demonstrations will likely increase, with fewer moving from ongoing to completed status each year than in the past. It is estimated that six field demonstrations will be completed each year. Figure 8. Distribution of in situ and ex situ SITE demonstration projects. During FY 98, six new innovative technologies were evaluated in the field. Completed demonstration projects are listed in Table 1, and ongoing projects are provided in Table 2. All completed and ongoing projects in the Demonstration Program, ETP, and MMT Program are listed in Appendices A and B. #### **Emerging Technology Program** Nine solicitations were issued from November 1987 (E01 Solicitation) to July 1995 (E09 Solicitation). A total of 77 technology development projects were initiated under the ETP, and 66 projects have been completed. Eighteen of the ETP projects are in the SITE Demonstration Program. The completed ETP projects for FY 98 are listed in Table 3. ## Monitoring and Measurement Technologies Program The MMT Program has leveraged its resources with EPA's Environmental Technology Verification Program. These two programs, known collectively as the Consortium for Site Characterization Technologies, have developed a partnership with the DOE. Resources from the SITE Program are used solely for those technologies addressing hazardous waste. This partnership will help to address the demands on the MMT Program and reduce the backlog of applications submitted by developers of innovative technologies. To further advance the MMT Program, a stakeholder group was formed to assist in outreach activities and in the selection of technologies. An advocates program involving the EPA Regional offices was also established to assist in the MMT demonstration process and to ensure that the products of the demonstrations address EPA issues. #### Technology Verification Process The technology verification process is designed to generate high-quality data that can be used by EPA to verify technology performance. Four key steps are inherent in the process: - Needs identification and technology selection - Demonstration planning and implementation - Report preparation Information distribution | Table 1. SITE Demonstration Projects Completed in FY 98 | | | | | |---|--|--|-------------------------------|--| | Developer
Location | Developer | Technology | Site Location | | | AK | Arctic
Foundations,
Inc. | The Cryogenic Barrier creates a frozen barrier wall to contain and immobilize hazardous waste. The demonstration evaluated the barrier's ability to contain radionuclides from the Oak Ridge National Laboratory Waste Area Grouping 9 Homogenous Reactor Experiment pond. | Oak Ridge, TN | | | ОН | ASC\EMR
Wright
Patterson | Phytoremediation of groundwater involves planting deeprooted, water-loving vegetation to reduce contaminant concentrations in the saturated zone. The U.S. Air Force has initiated a field demonstration designed to evaluate the effectiveness of eastern cottonwood trees in remediating shallow groundwater contaminated with TCE. | Ft. Worth, TX | | | со | Colorado
Department of
Health and
Environment | The constructed wetlands-based treatment technology uses natural geochemical and microbiological processes inherent in an artificial wetland ecosystem to accumulate and remove metals from influent waters. The demonstration evaluated process effectiveness, toxicity reduction, and biogeochemical processes at the Burleigh Tunnel near Silver Plume, Colorado. | Silver Plume,
CO | | | СО | Pintail
Systems, Inc. | This technology uses microbial detoxification of cyanide in heap leach processes to reduce cyanide levels in spent ore and process solutions. The biotreatment populations of natural soil bacteria are grown to elevated concentrations, which are applied to spent ore by drip or spray irrigation. | Battle Mountain,
NV | | | СО | Rocky
Mountain
Remediation
Services | The ENVIROBOND TM solution strongly binds heavy metals in a metal-ligand compound to prevent leaching. It can be applied to reduce metal availability in contaminated soils and other wastes. | Crooksville/
Roseville, OH | | | TX | Star Organics | The Soil Rescue solution consists of organic acids that are sprayed onto and then tilled into the contaminated media. The organic acids act as a chelating agent to bond to metals, thereby reduce their leachability. | Crooksville/
Roseville, OH | | | Table 2. SITE Demonstration Ongoing Projects | | | | | |--|---------------------------------------|---|-----------------------------------|--| | Developer
Location | Developer | Technology | Site Location | | | CA | Eco Mat, Inc. | This technology uses denitryfing bacteria to convert nitrogen compounds to harmless byproducts. The process uses common bacteria that live on a sponge-like medium inside a reactor. The reactor circulates these materials with contaminated water to enhance biodegradation rates. | Bendena, KS | | | LA | Electrokinetics,
Inc. | Electrokinetic's soil processes extract or remediate heavy metal and organic contaminants in soils. Electrodes are placed in situ, and a current is applied to mobilize ions and
remove contamination. | Fort Polk, LA | | | Ontario,
Canada | EnviroMetal,
Technologies,
Inc. | The In Situ Reactive Barrier uses zero-valent iron to reduce oxidized metals and to induce reductive dechlorination of chlorinated VOCs. In addition, this technology can immobilize some metals by reduction and sorption. | Rocky Flats, CO | | | CA | Geokinetics
International,
Inc. | This technology applies AC current to the soil matrix in order to produce heat. This process reduces LNAPL viscosity, causes DNAPL to float to the top of the saturated zone, reduces the size of the smear zone, and can increase the biological activity in the heated zone. | Pearl Harbor,
HI | | | VA | ITT Industries | The Enhanced Bioremediation Technology, also called cometabolic degradation, is designed to stimulate the naturally occurring microbial degradation of organic compounds. | Roanoke, VA | | | MA | KSE, Inc. | This technology removes chlorinated and nonchlorinated VOCs in dilute concentrations from air streams by adsorption and photochemical reactions. | N. Smithfield,
RI | | | PA | MACTEC-SBP
Environmental,
Inc. | The NoVOCs™ in-well stripping technology combines air-lift pumping with in-well vapor stripping to remove VOCs from groundwater. | San Diego, CA | | | UT | Phytokinetics,
Inc. | This demonstration assesses the ability of plants to reduce the concentrations of petroleum hydrocarbons in near-surface soils and the saturated zone, and to modify the groundwater gradient. The ability of alfalfa and fescue to remediate petroleum hydrocarbons in soil will be evaluated while poplar and juniper trees will be investigated for their ability to treat the saturated groundwater zone. | Ogden, UT | | | ИЈ | Phytotech, Inc. | The phytoremediation biotechnology uses specially selected and engineered plants to treat soil and sediment contaminated with toxic metals such as lead and cadmium, as well as radionuclides. The technology is being demonstrated at a former metal-plating facility. | Trenton, NJ | | | со | Pintail Systems,
Inc. | The technology involves growing and augmenting indigenous bacteria in culture to reduce the leaching of lead at contaminated sites. The cultures are grown in a laboratory setting, and applied in situ to biostabilize lead contamination in soil. | Crooksville,
OH; Aurora,
CO | | | Table 2. SITE Demonstration Ongoing Projects (continued) | | | | |--|---|---|-------------------------------| | Developer
Location | Developer | Technology | Site Location | | СО | Pintail Systems,
Inc. | Isolated indigenous organisms capable of remineralizing arsenic are grown and augmented in lab cultures. These organisms are being used to remineralize arsenic at the Argonaut Mine site | Jackson, CA;
Aurora, CO | | ID | Process
Technologies,
Inc. | The Photolytic Destruction Technology is a method of photochemically oxidizing gaseous organic compounds within a reaction chamber. The technology uses ultraviolet light to break apart chemical bonds of VOC molecules. | Sacramento, CA | | IN | Sevenson
Environmental
Services, Inc. | The MAECTITE® chemical treatment process can be applied to soils, waste and other materials containing lead and other heavy metals. The technology uses reagents and processing equipment to stimulate the nucleation of crystals by chemical bonding. | Sparta, WI | | ОН | U.S. EPA,
NRMRL | Alternate Cover Assessment Program (ACAP) - The ACAP is a cooperative partnership of industry, government, and research institutions that will evaluate evapotranspiration and break cover systems. The program is expected to provide cost-effective alternative cover designs, and assist in the development of designs at other sites. | 10 sites around
the nation | #### Needs Identification and Technology Selection The first aspect of the technology verification process is to determine the most important technology needs of EPA and the regulated community. EPA, the Department of Defense, DOE, industry, and state agencies are asked to identify technology needs and interest in a technology area. Once a technology need is established, a search is conducted to identify suitable technologies that will address the need. The technology search and identification process consists of reviewing responses to Commerce Business Daily announcements, searches of industry and trade publications, attendance at related conferences, and leads from technology developers. MMTs are evaluated against the following criteria: - Meets regulatory or user needs - May be used in the field or in a mobile laboratory - Applicable to a wide variety of environmentally impacted sites - ► High potential for resolving problems for - which current methods are unsatisfactory - Costs are competitive with current methods - Performance is better than current methods in areas such as data quality, sample preparation, or analytical turnaround time - Uses techniques that are easier and safer than current methods - Is a commercially available, field-ready technology #### Demonstration Planning and Implementation After a technology has been selected, EPA, the support contractor, and the technology developer agree to responsibilities for conducting the demonstration and evaluating the technology. The following issues are addressed at this time: - Identifying demonstration sites that will provide the appropriate physical or chemical attributes, in the desired environmental media - Identifying and defining the roles of - demonstration participants, observers, and reviewers - Determining logistical and support requirements (such as field equipment, power and water sources, mobile laboratory, or communications network) - Arranging analytical and sampling support - Preparing and implementing a demonstration plan that addresses the experimental design, sampling design, quality assurance/quality control (QA/QC), health and safety considerations, scheduling of field and laboratory operations, data analysis procedures, and reporting requirements | Table 3. Si | Table 3. SITE Emerging Technology Projects Completed in FY 98 | | | | | |-----------------------|---|--|-----------------------|--|--| | Developer
Location | Developer | Technology Description | Treatment
Category | | | | MA | ABB Environmental Services, Inc. | A two-step anaerobic/aerobic biodegradation sequence allows degradation of PCE and TCE to lesser chlorinated DCE and vinyl chloride in the anaerobic stage. The aerobic stage then degrades DCE and vinyl chloride. | Biological | | | | LA | Electrokinetics,
Inc. | This process applies a low level DC electrical potential to cause physical-chemical and hydrological changes in the waste and the conductive medium. This augments uniform transport of process additives, and therefore enhances biodegradation. | Physical | | | | OH | IT Corporation | This process removes heavy metals from contaminated soils and sludges by forming a soluble chelate. Metals can then be separated from the sludge and recovered. | Physical | | | | ОН | IT Corporation
(formerly OHM
Remediation
Services) | This technology enhances in situ bioremediation by the subsurface injection of oxygen microbubbles in a water solution containing low concentrations of surfactant. The microbubbles provide an electron acceptor for indigenous microorganisms to enhance biodegradation rates. | Biological | | | | UT | Phytokinetics, Inc. | Phytoremediation can be used to enhance biological degradation of a variety of organic contaminants in the near surface zone. | Biological | | | | со | Pintail Systems,
Inc. | Bioremediation processes can be used for in situ biomineralization of heavy metals in soils, sludges, and sediments. Microorganisms can be used to cause metal hydroxides, oxides, and carbonates to precipitate, and stabilize in a less leachable form. | Biological | | | | TN | Thermo Nutech, Inc. | The automated Segmented Gate System uses a conveyor to transport radioactively contaminated soil under an array of radiation detectors. Contaminated material is diverted to a disposal area, while clean material can be reclaimed, thereby reducing cleanup costs. | Physical | | | | Table 5. SITE Future Emphasis Areas 1999 - 2002 | | | | | | | | |---|---|---|--|--|--|--|--| | GROUNDWATER | SOILS | SEDIMENTS | CONTAINMENT | | | | | | Organics / Inorganics | Metals | Pesticides | Alternative Caps (e.g., evapotranspiration covers) | | | | | | DNAPLs - fractured
bedrock / Karst | Pesticides | Chlorinated Aromatics | Walls / Bottoms | | | | | | Oxygenated Compounds | Chlorinated Compounds | Metals | New Materials / Delivery
Systems | | | | | | Chlorinated Compounds | Aromatics | Sediment Sampling
Technologies (MMT) | | | | | | | Aromatics | Creosote | New Materials /
Processes | | | | | | | Creosote | Phenols | | | | | | | | Phenols | Total Petroleum Hydrocarbons Measurement Technologies (MMT) | | | | | | | | New Materials /
Processes | New Materials / Processes | | · | | | | | | Table 6. SITE Program
Projects FY 99 | | | | | | | |---|--|--|---|--|--|--| | Site Name/
Location | Technology | Project Description | Proposed Schedule | | | | | Aladdin Plating
Clarks Summit, PA | Electokinetics | Site contains hexavalent chromium contaminated groundwater. | Treatability studies FY 98, Technology demonstration FY 99 | | | | | Beede Waste
Oil/Cash Energy
Plainstow, NH | In situ bioremedation under consideration | Surface soils contaminated with chlorinated VOCs, lead, PAHs and PCBs. | Treatability tests FY 98 | | | | | Cape Canaveral
Cocoa Beach, FL | 2 in situ thermal and 1 in situ oxidative technology | Groundwater and soils contaminated with TCE. | Multiple technology
selection FY 98,
Technology
demonstration FY 99-00 | | | | | Loring AFB
Aroostook County,
Maine | 4 in situ technologies under consideration by the site. | Groundwater contaminated with VOCs, BTEX and total petroleum hydrocarbons. | Selection of technology
FY 99 | | | | | Shrader Automotive
Facility, Saltire Ind.
Dickson, TN | Technology to be selected by site and SITE Program | TCE and its degradation products in groundwater with a Karst geological setting. | Selection of vendor(s) in FY 99 | | | | | Two sites in EPA
Regions 1 and 5 | 2 technologies to evaluate:
ARI Russian Peat Borer, and
AMS Split Core Sampler | Sediment sampling technologies will be tested at two sites. | Technology
demonstrations in FY
99 | | | | #### **MMT Program Areas of Interest** Emerging field analytical areas which will be included in the MMT Program include in situ monitoring technologies, especially for ground water. The MMT Program is interested in testing non-invasive techniques for site characterization, including a variety of geophysical techniques which claim to be able to map a DNAPL plume without the need for drilling wells. Evaluation of these technologies will be very complex and will likely be conducted at controlled spill facilities. Because of the importance of effective water quality monitoring to human and environmental health, the MMT Program is planning a demonstration in FY 00 to evaluate the performance of water quality monitoring equipment. This demonstration will evaluate a number of new and portable devices that have been proposed to measure various chemical indicators more accurately and inexpensively. There are a number of biological tests for toxicity in soils and water that are relevant to ecological risk assessment, and that may be useful in waste and drinking water treatment facilities. A demonstration is planned for FY 01 in order to evaluate the effectiveness of new biological assessment techniques that may be highly sensitive and inexpensive test methods. Since the program has matured, a number of developers in the area of X-ray fluorescence and gas chromatography / mass spectromety have made significant improvements in their technology and will be candidates for abbreviated demonstrations which will evaluate the improvements. #### Partnerships for Success #### Federal to Federal Interface Federal to federal interface is an important aspect to enhancing the benefits of technology demonstrations. It allows for leveraging resources, expedited cost and performance information exchange and cross fertilization of technical expertise between agencies. In common environmental areas of interest this type of joint research is of great benefit to all parties involved. One example of this type of approach is the Interagency DNAPL Consortium (IDC). Federal Interface: Cape Canaveral Air Station SITE Demonstration The IDC at the Cape Canaveral site is comprised of EPA, DOE, DOD, and NASA. The objective of the group is to conduct side-byside demonstrations of 3 innovative technologies for DNAPL remediation and monitoring. The demonstration will be conducted at Cape Canaveral Air Station Launch Complex 34. The SITE Program will provide the independent cost and performance evaluation. The Air Force and DOE are combining resources to contract the technology vendors to complete demonstrations. NASA is providing the site and in-kind services for the completion of the demonstrations. NASA plans to use successful demonstration results as a basis for selecting the appropriate technology for remediating Launch Complex 34. The geological formation at the NASA Cape Canaveral site is in what is considered a less difficult to treat formation (Figure 8). In FY 00-01, the IDC is interested in performing work at more difficult to treat geological formations such as heterogeneous saturated and unsaturated zones, fractured bedrock and complex clays. It is expected that different types of technologies may be needed to treat varying complex formations. These joint projects could potentially identify several innovative options or approaches to solving environmental problems where currently there are no solutions. #### Federal to State Interface Where there are common environmental areas of interest, it is equally important to have federal to state interactions as it is federal to federal cooperation. The ITRC provide a mechanism to interact with multiple state regulatory agencies and state specific verification Figure 9. DNAPL Testing Site Roadmap: Media (Based on NRC Report, 1997) programs. Like cooperation with other federal agencies, direct interaction with multiple state agencies provides many benefits. State regulatory agencies are also faced with hazardous waste clean-up, and regulations may vary between states. Interaction among multiple states on SITE projects can result in multiple technical issues being addressed in one field demonstration. This reduces duplication of field demonstrations to answer one or more state specific regulatory questions. ITRC currently has The several workgroups that crosscut the SITE Program's environmental priority areas of interest. The various groups are as follows: 1) Passive Barrier Workgroup, 2) DNAPL Workgroup, Phytoremediation Workgroup. These groups are invited to participate in SITE Program demonstrations projects. Groups choose to participate at a level required by the objectives of the workgroup. Involvement of the workgroups allows for better planning and exchange of technical requirement early in the project planning. State Interface: Rocky Flats SITE Demonstration One example of multistate participation is the passive barrier technology demonstration at the DOE Rocky Flats facility. The passive barrier workgroup attended a technical visitors day hosted by DOE and EPA. The group lead by DOE discussed construction, design and technology implementation. EPA led the discussion on the approach for testing and evaluating the demonstration. The ITRC team also participated in a field tour where they witnessed sampling procedures related to the performance demonstration. Another important workgroup within the ITRC is the verification team. This team worked with 11 different verification programs including SITE in evaluating and documenting technical and cost parameters that are important to the different states. The document will be a useful tool in determining and meeting the technical information needs of the state regulatory agencies. The report includes a variety of elements to be included in verification program reports. The states participating in the ITRC were encouraged by the willingness of the programs to accommodate states' needs. This type of cooperation will enhance states' confidence in the results of verification and allow them to make more informed decisions regarding use of innovative remediation technologies. #### **Information Transfer** Information transfer is accomplished through a number of mechanisms. While the internet information distribution is an effective mechanism, published documentation, meetings, and conferences remain an essential part of dissemination. information technical remediation Coordination with existing workgroups and programs is also essential. The SITE Program continues to work cooperatively Program, with DOD's **ESTCP** the Environmental Council of States (ECOS) sponsored ITRC, and as stated previously plans a much stronger technical relationship with the DOE's Office of Science and Technology. Internet service allows for quick and easily accessible information, and saves time and costs in publication. In FY 98, SITE converted all earlier publications to electronic format and has made those documents accessible through the SITE homepage. General program information is available as well as quarterly reports, most recent documents, program highlights and the technology profiles of the vendors participating in the program. As a result of the homepage, the number of documents printed has been reduced by 75%. According to Web Server Statistics, the monthly average number of hits for electronic information solicited from the SITE homepage over the last year was 514. Numerous requests come from outside the US, reflecting an increased global interest in the SITE Program. The program will continue pursuing and supporting the development of document summaries in areas where data exists on a variety of technologies or applications. The information is useful in providing the user community with comparative technical information and costs within an area. Documentation will continue for some time since many of the technologies are in situ and highly complex. In situ technology evaluations are tested over varying lengths of time, with a minimum time of 3-6 months. Most are evaluated for one year. In the case of phytoremediation, growing seasons span 2-3 vears. The summaries will need updating as the technologies mature and information becomes
available. http://www.epa.gov/ORD/SITE # Appendix A SITE PROJECTS (Alphabetically by Developer State) #### SITE PROJECTS - BY DEVELOPER STATE | State | Developer | Technology | Contact | Program | Status | |------------|--|---|--|---|-----------------------------| | Alabama | CMS Research
Corporation
Birmingham, AL | Portable Gas
Chromatograph | H. Ashley Page
205-773-6911 | Monitoring and
Measurement
Technologies | Completed 1992 | | Alaska | Brice Environmental
Service Corp.
(BESCORP)
Fairbanks, AK | Soil Washing
Plant | Craig Jones
907-452-2512 | Demonstration | Completed
September 1992 | | Arizona | Arizona State
University
Tempe, AZ | Photocatalytic
Oxidation and
Air Stripping | Gregory Raupp
606-965-2828
Elliot Berman
352-867-1320 | Emerging
Technology | Ongoing | | | STC Omega
(formerly Silicate
Technology
Corporation)
Scottsdale, AZ | Solidification
and
Stabilization
Treatment | Stephen Pelger
Scott Larsen
602-948-7100 | Demonstration | Completed
November 1990 | | California | Analytical and
Remedial
Technology, Inc.,
Milpitas, CA | Automated Sampling and Analytical Platform | Gary Hopkins
408-263-8931 | Monitoring and
Measurement
Technologies | Completed
May 1991 | | | Berkeley Environmental Restoration Center (formerly Udell Technologies, Inc.) Emeryville, CA | In situ
Enhanced
Extraction | Kent Udell
510-642-2928
Steve Collins
510-643-1300 | Demonstration | Completed 1993 | | | Binax Corp., Antox
Division
Sunnyville, CA | Imunoassay for PCB in Soil | Richard Lankow
408-752-1353 | Monitoring and Measurement Technologies | Completed 1992 | | | COGNIS, Inc.
Santa Rosa, CA | Biological/
Chemical
Treatment | Steve Rock
U.S. EPA
513-569-7149 | Emerging
Technology | Completed 1995 | | | Eco Mat, Inc.
Hayward, CA | Biological
Denitrification | Kim Halley 510-783-5885 | Demonstration | Ongoing | | | Energy and Environmental Research Corporation Irvine, CA | Hybrid
Fluidized Bed
System | Richard Koppang
714-859-8851 | Emerging
Technology | Completed 1992 | | | | Reactor Filter
System | Neil Widmer
714-859-8851 | Emerging
Technology | Completed 1995 | | | Environmental
Biotechnologies
Montara, CA | Microbial
Composting | Dougleas
Munnecke
415-596-1020 | Emerging Technology Demonstration | Ongoing Ongoing | | State | Developer | Technology | Contact | Program | Status | |------------|---|--|---|------------------------|--| | California | EPOC Water, Inc.
Fresno, CA | Precipitation,
Microfiltration,
Sludge
Dewatering | Rodney Squires
209-291-8144 | Demonstration | Completed
August 1993 | | | General Atomics
(formerly Ogden
Environmental
Services)
San Diego, CA | Circulating Bed
Combuster | Jeffrey Broido
619-455-4495 | Demonstration | Completed
September 1989 | | | | Acoustic
Barrier
Separator | Anthony Gattuso
619-455-2910 | Emerging
Technology | Completed 1995 | | | Geokinetics | Electrokinetics | Steven H.
Schwartzkopf
415-424-3176 | Demonstration | Ongoing | | | Geokinetics & Duke
Engineering | Electrokinetic Heating & Surfactant Flushing | Thomas
Holdsworth
U.S. EPA
513-569-7675 | Demonstration | Ongoing
treatability
testing
underway | | | GIS\Solutions, Inc.
Concord, CA | GIS\Key
Environmental
Data
Management
Software | John Saguto
415-827-5400 | Demonstration | Completed
August 1993 | | | Groundwater Technology Government Services, Inc. Concord, CA | Biological
Composting | Ronald Hicks
510-671-2387 | Emerging
Technology | Completed 1995 | | · | Hughes Environmental Systems, Inc. Manhattan Beach, CA | Steam
Enhanced
Recovery
Process | Paul De Percin
U.S. EPA
513-569-7797 | Demonstration | Completed
September 1993 | | | Lockheed Martin
Missiles & Space
Co., Inc.
Palo Alto, CA | Electrokinetic
Remediation | Steven H.
Schwartzkopf
415-424-3176 | Demonstration | Ongoing | | | Magnum Water
Technology
El Segundo, CA | CAV-OX
Process | Dale Cox
310-322-4143
Jack Simser
310-640-7000 | Demonstration | Completed
March 1993 | | | Membrane
Technology and
Research, Inc.
Menlo Park, CA | VaporSep
Membrane
Process | Marc Jacobs
Doug Gottschlich
415-328-2228 | Emerging
Technology | Completed 1991 | | State | Developer | Technology | Contact | Program | Status | |------------|---|--|---|---|-----------------------------| | California | NOVATERRA, Inc.
(formerly Toxic
Treatments USA,
Inc.)
Los Angeles, CA | In-situ and Air
Stripping | Philip LaMori
213-969-9788 | Demonstration | Completed
September 1989 | | | Praxis Environmental Services Burlingame, CA | In-situ Steam
Enhanced
Extraction | Lloyd Stewart
650-548-9288
Major Paul B.
Devon
850-283-6288 | Demonstration | Ongoing | | | Pulse Sciences,
San Leandro, CA | X-Ray
Treatment
(Aqueous) | Vernon Bailey
510-632-5100
ext. 227 | Emerging
Technology | Completed 1994 | | | | X-Ray
Treatment
(Soils) | Vernon Bailey
510-632-5100
ext. 227 | Emerging
Technology | Ongoing | | | Radian Corporation
(formerly AWD
Technologies, Inc.)
Walnut Creek, CA | Integrated Vapor Extraction and Steam Vacuum Stripping | David Bluestein
510-988-1125 | Demonstration | Completed
September 1990 | | | Retech, Inc.
Ukiah, CA | Plasma Arc
Vitrification | Ronald Womack
Leroy B. Leland
707-462-6522 | Demonstration | Completed July
1991 | | | Rochem Separation
Systems, Inc.
Torrance, CA | Rochem Disc
Tube Module
System | David LaMonica
310-370-3160 | Demonstration | Completed
August 1994 | | | Roy F. Weston
Sherman Oaks, CA | Air Sparging
Process | Jeff Bannon
818-971-4900
Eric Klingel
704-599-4818 | Demonstration | Completed 1994 | | | Simulprobe
Technologies, Inc. | Core Barrel
Soil Sampler | Richard Laton
415-883-8787 | Monitoring and Measurement Technologies | Completed | | | SIVE Services
Dixon, CA | Steam Injection
and Vacuum
Extraction | Douglas Dieter
916-678-8358 | Demonstration | Ongoing | | | SRI Instruments
Torrance, CA | Portable Gas
Chromatograph | Douglas Gavilanes
310-214-5092 | Monitoring and
Measurement
Technologies | Completed
January 1992 | | | Terra-Kleen
Response Group,
Inc. | Solvent
Extraction | Alan Cash
619-558-8762 | Demonstration | (1) Completed
1994 | | | Del Mar, CA Texaco, Inc. | Entrained-Bed | John Wintor | Demonstration | (2) Ongoing Completed July | | State | Developer | Technology | Contact | Program | Status | |------------|--|--|--|---|----------------------------| | California | Thermatrix, Inc.
(Formerly Purus,
Inc.)
San Jose, CA | Photolytic
Oxidation | Steve McAdams
408-453-0490 | Emerging
Technology | Completed 1992 | | | U.S. EPA Region IX
San Francisco, CA | Excavation and
Foam
Suppression of
Volatiles | Jack Hubbard
U.S. EPA
513-569-7507 | Demonstration | Completed July
1990 | | | U.S. Filter
(formerly Ultrox)
Huntington, CA | Ultraviolet
Radiation and
Oxidation | William
Himebaugh
714-545-5557 | Demonstration | Completed
March 1989 | | | Xon Tech, Inc.
Van Nuys, CA | Xon Tech
Sector Sampler | Matt Young
818-787-7380 | Monitoring and
Measurement
Technologies | Completed 1991 | | Colorado | CF Systems
Corporation
Arvada, CO | Solvent
Extraction | L.V. Benningfield
303-420-1550 | Demonstration | Completed
December 1988 | | | | Batch Organics
Extraction Unit | L.V. Benningfield
303-420-1550 | Demonstration | Ongoing | | | Colorado Dept. of
Health
Denver, CO | Wetland-Based
Treatment for
Mineral Mine
Drainage | Jim Lewis
303-692-3390 | Demonstration | Ongoing | | | Colorado School of
Mines, Golden, CO
and Colorado
Department of
Health
Denver, CO | Wetlands-Based
Treatment | Thomas Wildeman
303-273-3642
James Lewis
303-692-3390 | Emerging
Technology
Demonstration | Completed Ongoing | | | Cure International Inc. (Formerly General Environmental Corporation) Englewood, CO | CURE
Electrocoagulati
on | Carl Dalrymple
303-761-6960
Dan Eide
561-575-3500 | Demonstration | Completed 1995 | | | Pintail Systems, Inc.
Aurora, CO | Biodegradation of Cyanide | Caren Caldwell
303-367-8443 | Demonstration | Completed 1998 | | | | Biostabilization of Lead | Leslie Thompson
303-367-8443 | Demonstration | Ongoing | | | | Biological
Stabilization of
Arsenic in Soils | Leslie Thompson
303-367-8443 | Demonstration | Ongoing | | State | Developer | Technology | Contact | Program | Status | |-------------|--
--|---|---|--| | Colorado | Smith Environmental
Technologies
Corporation
(formerly Canonie
Environmental
Services Corp.)
Englewood, CO | Low
Temperature
Thermal
Aeration | Joseph Hutton
303-790-1747 | Demonstration | Completed
September 1992 | | | | Anaerobic
Thermal
Processor | Joseph Hutton
303-790-1747 | Demonstration | Completed May
1991 and June
1992 | | | Walsh Environmental Scientists and Engineers (ECOVA) Boulder, CO | Bioslurry
Reactor
(technology
developed by
ECOVA Corp.) | William Mahaffey
303-670-2875
303-443-3282 | Demonstration | Completed
September 1991 | | Connecticut | Dexsil Corporation
Hamden, CT
4 demonstrations | Environmental Test Kits (PCB) Chlor-N-Soil L2000 PCB/Chloride Analyzer | Jack Mahon
203-288-3509 | Monitoring and
Measurement
Technologies | Completed
August 1993 | | Delaware | E.I. DuPont de
Nemours and Co.
and Oberlin Filter
Co.
Newark, DE and
Waukesha, WI | Membrane
Microfiltration | Ernest Mayer
302-774-2277 | Demonstration | Completed
April-May 1990 | | | Hewlett-Packard
(formerly MTI
Analytical
Instruments)
Wilmington, DE | Portable Gas
Chromatograph | Hewlett-Packard
800-227-9770
Bob Belair
302-633-8487 | Monitoring and
Measurement
Technologies | Completed 1992 | | | Strategic Diagnostics
Inc. (formerly
Ensys, Inc.)
Newark, DE | Immunoassay
for PCP | Tim Lawruk
800-544-8881
302-456-6782 | Monitoring and
Measurement
Technologies | Completed
September 1993 | | Florida | Funderburk and
Associates
Apollo Beach, FL | Dechlorination
and
Immobilization | Ray Funderburk
800-723-8847 | Demonstration | Completed
October 1997 | | | High Voltage Environmental Applications, Inc./Florida International University and University of Miami Miami, FL | High-Energy
Electron
Irradiation
(Aqueous) | William Cooper
305-593-5330 | Emerging
Technology
Demonstration | Completed 1993 Completed 1994 | | State | Developer | Technology | Contact | Program | Status | |---------|---|---|---|---|----------------------------| | Florida | High Voltage Environmental Applications, Inc. Miami, FL | High Energy
Electronic
Beam (Solids) | William Cooper
305-593-5330 | Emerging
Technology | Ongoing | | | PCP, Inc.
West Palm Beach,
FL | Ion Mobility
Spectrometry | Martin Cohen
407-683-0507 | Monitoring and
Measurement
Technologies | Completed 1991 | | Georgia | American
Combustion, Inc.
Norcross, GA | PYRETRON
Thermal
Destruction | Gregory Gitman
404-564-4180 | Demonstration | Completed
January 1988 | | | ETG., Inc.
Norcross, GA | Long-Path Fourier Transform Infrared Spectrometer | Orman Simpson
404-242-0977 | Monitoring and
Measurement
Technologies | Completed
January 1992 | | | Sonotech, Inc.
Atlanta, GA | Frequency Tunable Pulse Combustion System | Ben Zinn
404-894-3033 | Demonstration | Completed 1995 | | | Williams Environmental Services, Inc. (Formerly Harmon Environmental Services, Inc.) Stone Mountain, GA | Soil Washing | S. Jackson
Hubbard
(U.S. EPA)
513-569-7507 | Emerging
Technology | Exited 1992 | | Idaho | Aquatic Research
Instruments | Russian Peat
Borer | Will Young
208-768-2222 | Monitoring and
Measurement
Technologies | Ongoing | | | Art's Manufacturing and Supply | AMS™ Dual-
Tube Liner Soil
Sampler | Brian Anderson
800-635-7330 | Monitoring and
Measurement
Technologies | Completed | | | | AMS™ Split
Core Sampler | Brian Anderson
800-635-7330 | Monitoring and
Measurement
Technologies | Ongoing | | | J.R. Simplot Co.
Pocatello, ID | Anaerobic
Biological
Process | Russell Kaake
208-235-5620 | Emerging
Technology | Completed 1993 | | | | Anaerobic
Biological
Process | Tom Yergovich 208-238-2850 | Demonstration | Completed
February 1994 | | | Morrison Knudsen
Corp./STG
Technologies
Boise, ID | Grouting
Technique | Kathryn Levihn
Rick Raymondi
208-386-6115 | Demonstration | Completed | | State | Developer | Technology | Contact | Program | Status | |----------|--|---|---|---|----------------------------| | Idaho | Process
Technologies, Inc.
Boise, ID | Photolytic
Destruction of
SVE off-gases | Michael Swan
208-385-0900 | Demonstration | Ongoing | | Illinois | Institute of Gas
Technology | Chemical and
Biological
Treatment | Robert Kelley
847-768-0722 | Emerging
Technology | Completed 1993 | | | | Fluid Extraction- Biological Degradation Process | Albert Paterek
847-768-0720 | Emerging
Technology | Completed 1992 | | | | Fluidized-Bed
Cyclonic
Agglomerating
Incinerator | Mike Mensinger
847-768-0602
Amir Rehmat
847-768-0588 | Emerging
Technology | Completed | | | | Superficial Extraction/Liqu id Phase Oxidation of Waste | Mike Mensinger
847-768-0602 | Emerging
Technology | Ongoing | | | OHM Remediation
Services (formerly
RUST Remedial
Services, Inc.)
Lombard, IL | X-TRAX
Thermal
Desorption | Chetan Trivedi
630-261-3958 | Demonstration | Completed May
1992 | | | Recycling Sciences,
Inc.
Chicago, IL | Desorption and
Vapor
Extraction
System | William Meenan
312-663-4269 | Demonstration | Ongoing | | Indiana | Bio-Rem, Inc.
Butler, IN | Augmented Insitu Subsurface Bioremediation Process | David Mann
219-868-5823
800-428-4626 | Demonstration | Completed
December 1993 | | | Sevenson Environmental Services, Inc. Munster, IN | MAECTITE® Treatment Process | Chuck McPheeters
219-836-0116 | Demonstration | Ongoing | | | Geoprobe
Salina, KS | Soil, Water,
Vapor
Sampling Cone
Penetrometer | Wes McCall
Tom Omli
800-436-7762 | Monitoring and
Measuring
Technologies | Completed 1995 | | | Trinity Environmental Technologies, Inc. Mound Valley, KS | Ultrasonically
Assisted
Detoxification
of Hazardous
Materials | Duane Koszalka
316-328-3222 | Emerging
Technology | Completed 1992 | | State | Developer | Technology | Contact | Program | Status | |---------------|---|---|---|--|------------------------------------| | Iowa | Clements Associates,
Inc. | JMC
Environmentalist's
Subsoil Probe | Jim Clements 515-792-8285 | Monitoring and
Measurements
Technologies | Completed | | Kansas | Geoprobe Systems | Large Bore Soil
Sampler | Wesley McCall
Tom Omli
800-436-7762 | Monitoring and
Measurements
Technologies | Completed | | Kentucky | Microsensor System,
Inc.
Bowling Green, KY | Portable Gas
Chromatograph | Norman Davis
502-752-1353 | Monitoring and
Measurement
Technologies | Completed 1995 | | Louisiana | Advanced Remediation Mixing, Inc. (Formerly Chemfix Technologies, Inc.) Kenner, LA | Solidification
and
Stabilization | David Donaldson
504-831-3600 | Demonstration | Completed
March 1989 | | | Electrokinetics, Inc.
Baton Rouge, LA | Electrokinetic
Remediation | Elif Acar
504-753-8004 | Emerging Technology Demonstration | Completed
March 1989
Ongoing | | | | Electro-Klean
Electrokinetic
Soil
Remediation | Elif Acar
504-753-8004 | Emerging
Technology | Ongoing | | | SBP Technologies,
Inc.
Baton Rouge, LA | Membrane
Separation and
Bioremediation | Clayton Page 504-755-7711 | Demonstration | Completed
1995 | | Maryland | Quadrel Services,
Inc. | Emflux® Soil-
Gas Survey
System | Bruce Tucker
Paul Henning
301-874-5510 | Monitoring and
Measurement
Technologies | Completed | | | W. L. Gore and
Associates, Inc. | Gore-Scrubber® Passive Soil Gas Sampler | Ray
Fenstermacher
410-392-7600 | Monitoring and
Measurement
Technologies | Completed | | Massachusetts | ABB Environmental
Services, Inc.
Wakefield, MA | Anaerobic/
Aerobic
Sequential
Bioremediation | Willard Murray
617-245-6606 | Emerging
Technology | Ongoing | | | Harding Lawson
Associates (formally
ABB Environmental
Services, Inc.)
Wakefield, MA | Two-Zone
Plume
Interception In-
situ Treatment
Strategy | Jaret Johnson
Willard Murray
617-245-6606 | Emerging
Technology | Completed | | | Bruker Instruments
Billerica, MA | Bruker Mobile
Environmental
Monitor | Dr. Brian
Abraham
508-667-9580 | Monitoring and Measurement Technologies | Completed | | State | Developer | Technology | Contact | Program | Status | |---------------|--|---|---|---|-----------------------------------| | Massachusetts | HNU Systems, Inc.
Newtown, MA | Portable Gas
Chromatograph | Jack Driscoll
800-724-6690
617-964-6690 | Monitoring and
Measurement
Technologies |
Completed
January 1992 | | | HNU Systems, Inc.
Newtown, MA | Portable X-Ray
Fluorescence
Spectrometer | Jack Driscoll
800-724-6690
617-964-6690 | Monitoring and
Measurement
Technologies | Completed 1995 | | | KSE, Inc.
Amherst, MA | Air II
Photocatalytic
Technology for
Air Streams | James Kittrell
413-549-5506 | Demonstration | Ongoing | | | Maxymillian Technologies, Inc. (formerly Clean Berkshires) Lanesboro, MA | High
Temperature
Thermal
Process | Neal
Maxymillian
617-557-6077 | Demonstration | Completed
December 1993 | | | Millipore
Corporation
Bedford, MA | EnviroGard
PCB
Immunoassay
Test Kit | Alan Weiss
617-275-9200 | Monitoring and
Measurement
Technologies | Completed
January 1992 | | | | Immunoassay
for PCP (Soil,
Water) | Alan Weiss
617-275-9200 | Monitoring and
Measurement
Technologies | Completed 1993 | | | Niton Corporation
Bedford, MA | Portable X-Ray
Fluorescence
Spectrometer | Don Sackett
781-275-9275 | Monitoring and
Measurement
Technologies | Completed 1995 | | | Ohmicron
Corporation
Newton, MA | Immunoassay
for PCP in Soil | Mary Hayes
215-860-5115 | Monitoring and
Measurement
Technologies | Completed 1993 | | | PSI Technology Co.
Andover, MA | Immobilize and
Decontaminate
Metals in
Aggregate
Solids | Joseph Morency
508-689-0003 | Emerging
Technology | Completed 1993 | | | UV Technologies, Inc. (formerly Energy and Environmental Engineering, Inc.) East Cambridge, MA | Laser-Induced
Photochemical
Oxidative
Destruction | John Roll
James Porter
617-666-5500 | Emerging
Technology | Completed 1993 | | Minnesota | BioTrol, Inc.
Eden Prairie, MN | Methanotropic
Bioreactor
System | Durell Dobbins
612-942-8032 | Emerging
Technology | Completed 1992 | | | BioTrol, Inc.
Eden Prairie, MN | Biological
Aqueous
Treatment
System | Durell Dobbins
612-942-8032 | Demonstration | Completed July-
September 1989 | | State | Developer | Technology | Contact | Program | Status | |------------|---|---|--|------------------------|---| | Minnesota | BioTrol, Inc.
Eden Prairie, MN | Soil Washing
System | Durell Dobbins
612-942-8032 | Demonstration | Completed
September-
October 1989 | | | Membrane
Corporation
Minneapolis, MN | Membrane Gas
Transfer in
Waste
Remediation | Charles Gantzer
612-378-2160 | Emerging
Technology | Ongoing | | Montana | Montana College of
Mineral Science and
Technology
Butte, MT | Air-Sparged
Hydrocyclone | Theodore Jordan
406-496-4112
406-496-4193 | Emerging
Technology | Completed 1994 | | | | Campbell
Centrifugal Jig | Gordon Ziesing
406-496-1573
406-496-4193 | Emerging
Technology | Ongoing | | Nebraska | Universiity of
Nebraska
Lincoln, NE | Spray Irrigation | Ray Spalding
402-472-7558 | Demonstration | Completed 1996 | | Nevada | U.S. EPA
Las Vegas, NV | Field Analytical
Screening
Program
(FASP) | Howard Fribush
703-603-8831
Larry Jack
702-798-2373 | Demonstration | Completed 1996 | | New Jersey | ART International,
Inc.
(formerly Enviro
Sciences, Inc.)
Denville, NJ | Low-Energy
Solvent
Extraction
Process | Werner Steiner
201-627-7601 | Emerging
Technology | Completed 1994 | | | Dehydro-Tech.
Corporation
Somerville, NJ | Carver-
Greenfield
Process for
Extraction of
Oily Waste | Theodore
Trowbridge
908-904-1606 | Demonstration | Completed
August 1991 | | | Geotech Development Corporation Newark, NJ | Cold Top
Vitrification | William
Librizzi
201-596-5846
Thomas Tate
610-337-8515 | Demonstration | Ongoing | | | M.L. ENERGIA,
Inc.
Princeton, NJ | Reductive
Photo-
Dechlorination
Treatment | Moshe Lavid
609-799-7970 | Emerging
Technology | Completed 1995 | | | M.L. ENERGIA,
Inc.
Princeton, NJ | Reductive Photo-Thermal Oxidation Processes for Chlorocarbons | Moshe Lavid
609-799-7970 | Emerging
Technology | Ongoing
· | | State | Developer | Technology | Contact | Program | Status | |------------|--|---|---|---|---------------------------| | New Jersey | New Jersey Institute
of Technology,
Hazardous Substance
Management
Research Center
Newark, NJ | Pneumatic
Fracturing/
Bioremediation | John Schuring
201-596-5849
David Kosson
908-445-4346 | Emerging
Technology | Completed 1994 | | | New Jersey Institute
of Technology
Newark, NJ | GHEA
Associates
Process | Itzhak Gottlieb
201-226-4642 | Emerging
Technology | Completed 1992 | | | Phytotech, Inc.
Monmouth, NJ | Phytoextraction of metal from soil | Burt Ensley
908-438-0900 | Demonstration | Ongoing | | | Sentex Sensing
Technology, Inc.
Ridgefield, NJ | Portable Gas
Chromatograph | Amos Linenberg
201-945-3694 | Monitoring and
Measurement
Technologies | Completed
January 1992 | | New Mexico | Billings and
Associates, Inc.
Albuquerque, NM | Subsurface Volatilization and Ventilation System | Gale Billings
505-345-1116
Don Brenneman
713-676-5324 | Demonstration | Completed May
1994 | | | Resource Management and Recovery (formerly Bio-Recovery Systems, Inc.) Las Cruces, NM | AlgaSorb
Biological
Sorption | Mike Hosea
505-382-9228 | Emerging
Technology | Completed 1990 | | | Sandia National
Laboratories
Albuquerque, NM | Electrokinetic
Extraction in
Unsaturated
Soils | Eric Lindgren
505-844-3820
Earl Mattson
505-856-3311 | Demonstration | Ongoing | | | Thermo Nutech
(formerly TMA
Eberline)
Albuquerque, NM | Segmented Gate
System for
Radioactive
Materials | Jeff Brown
423-481-0683 | Emerging
Technology | Ongoing | | New York | Photovac
International, Inc.
Deer Park, NY | Portable Gas
Chromatograph | Mark Collins
516-254-4199 | Monitoring and
Measurement
Technologies | Completed
January 1992 | | | SBP Technologies,
Inc.
White Plains, NY | Bioventing, Air Sparging, Biological Treatment for Ground Water (multideveloper project with State of New York) | Richard
Desrosiers
914-694-2280
Nick Kolak
518-457-3372 | Demonstration | Completed 1995 | | State | Developer | Technology | Contact | Program | Status | |----------|--|--|---|------------------------|--------------------------| | New York | Solucorp Industries
West Nyack, NY | Molecular
Bonding System | Robert Kuhn
914-623-2333 | Demonstration | Ongoing | | , | RECRA Environmental, Inc. (formerly Electro- Pure Systems, Inc.) Amherst, NY | Alternating
Current
Electrocoagula-
tion Technology | Kenneth Kinecki
800-527-3272 | Emerging
Technology | Completed 1992 | | | State University of
New York at
Oswego
Oswego, NY | Photocatalytic
Treatment for
Sediments | Ronald Scrudato
Jeffrey
Shiarenzelli
315-341-3639 | Emerging
Technology | Completed 1995 | | | Xerox Corporation
Webster, NY | Ground Water
Extraction | Ron Hess
716-422-3694
Phil Mook
916-643-5443 | Demonstration | Completed 1995 | | Ohio | ASC/EMR
Wright Patterson
AFB
Dayton, OH | Phytoremedia-
tion of TCE in
Groundwater | Greg Harvey
513-255-7716 | Demonstration | Completed 1998 | | | Battelle Memorial
Institute
Columbus, OH | In-situ Electroacoustic Soil Decontamina- tion | Satya Chauhan
614-424-4812 | Emerging
Technology | Completed | | | Ferro Corporation
Independence, OH | Waste Vitrification Through Electric Melting | S.K. Muralidhar
216-641-8580 | Emerging
Technology | Completed | | | IT Corporation
Cincinnati, OH | Chelation/
Electro-
deposition of
Toxic Metals
from Soil | Radha Krishnan
513-782-4700 | Emerging
Technology | Ongoing | | | IT Corporation
(formerly OHM
Remediation
Services Corp.)
Findlay, OH | Oxygen
Microbubble
In-situ
Bioremediation | Douglas Jerger
423-690-3211 | Emerging
Technology | Completed 1998 | | | University of Dayton
Research Institute
Dayton, OH | Photothermal
Detoxification
Unit (PDU) | Berry Dellinger
John Graham
513-229-2846 | Emerging
Technology | Completed 1994 | | | U.S. EPA NRMRL
and ETG
Environmental
Cincinnati, OH | Base-Catalyzed
Dechlorination
Process | George Huffman
513-569-7431
Yei-Shong Shieh
610-431-9100 | Demonstration | Completed
August 1993 | | State | Developer | Technology | Contact | Program | Status | |--------------|---|--|---|---|-----------------------------| | Ohio | U.S. EPA Risk Reduction Engineering Laboratory and IT Corporation Cincinnati, OH | Debris Washing
System | Michael Taylor
Majid Dosani
513-782-4700 | Demonstration | Completed
November 1992 | | | U.S. EPA Risk Reduction Engineering Laboratory and FRX, Inc. Cincinnati, OH |
Hydraulic
Fracturing | William Slack
513-469-6040 | Demonstration | Completed
September 1992 | | | U.S. EPA
NRMRL
Cincinnati, OH | Alternate Cover
Assessment
Program
(ACAP) | Steve Rock
513-569-7149 | Demonstration | Ongoing | | Oklahoma | Geo-Microbial
Technologies,
Ochelata, OK | Technology for
Metals Release
and Removal
from Wastes | Donald Hitzman
918-535-2281 | Emerging
Technology | Ongoing | | Oregon | Metorex, Inc.
Bend, OR | Field Portable
X-Ray
Fluorescence
(FPXRF) | Jim Pasmore
800-229-9209
541-385-6748 | Monitoring and
Measuring
Technologies | Completed 1995 | | Pennsylvania | Aluminum Company
of America
(formerly Alcoa
Separations
Technology, Inc.)
Pittsburgh, PA | Bioscrubber | Paul Liu
412-826-3711 | Emerging
Technology | Completed 1993 | | | Calgon Carbon Oxidation Technologies (formerly Peroxidation Systems, Inc.) Pittsburgh, PA | Perox-Pur
Chemical
Oxidation | Bertrand Dussert
412-787-6681 | Demonstration | Completed 1995 | | | Center for
Hazardous Materials
Research
Pittsburgh, PA | Acid Extraction
Treatment
System | Stephe Paff
412-826-5321 | Emerging
Technology | Completed 1992 | | | Center for
Hazardous Materials
Research
Pittsburgh, PA | Organics Destruction and Metals Stabilization | B Stephe Paff
412-826-5321
Brian Bosilovich
412-826-5321 | Emerging
Technology | Completed 1995 | | State | Developer | Technology | Contact | Program | Status | |----------------|---|--|--|---|-----------------------------| | Pennsylvania | Concurrent Technologies (formerly Center for Hazardous Materials Research) Pittsburgh, PA | Lead Smelting | Brian Bosilovich
412-826-5321 | Emerging
Technology | Completed 1993 | | | MacTec-SPB Technologies Company Pittsburgh, PA | In Well Vapor
Stripping of
Ground Water | Mark McGlathery
800-444-6221 | Demonstration | Ongoing | | | Geo-Con, Inc.
Monroeville, PA
2 Demonstrations | In-situ
Solidification/
Stabilization | Linda Ward
Robert Hayden
412-856-7700 | Demonstration | Completed
April-May 1988 | | , | Lewis Environmental Services, Inc. Pittsburgh, PA | Soil Leaching
Process | Tom Lewis III
412-322-8100 | Emerging
Technology | Ongoing | | | Strategic
Diagnostics, Inc.
Newtown, PA | Immunoassay
for PCP | Craig Kostyshyn
215-860-5115
ext. 634 | Monitoring and Measurement Technologies | Completed 1993 | | | R.E. Wright
Middletown, PA | Bioventing, Air
Sparging,
Biological
Treatment for
Ground Water
(multi-
developer
project with
state of New
York) | Richard Cronce
717-944-5501 | Demonstration | Completed
September 1992 | | | Roy F. Weston, Inc.
West Chester, PA | Low Temperature Thermal Treatment System | Mike Cosmos
215-430-7423 | Demonstration | Completed
December 1992 | | | | Steam
Regeneration
Adsorption
System
(Ambersorb) | John
Thoroughgood
610-701-3728
Deborah Plantz
215-537-4061 | Emerging
Technology | Completed 1995 | | | Vortec Corp
Collegeville, PA | Oxidation and
Vitrification
Process | James Hnat
610-489-2255 | Emerging Technology Demonstration | Completed 1993 Ongoing | | South Carolina | University of South
Carolina
Columbia, SC | In-situ
Mitigation of
Acid Water | Frank Caruccio
803-777-4512 | Emerging
Technology | Completed 1995 | | State | Developer | Technology | Contact | Program | Status | |-----------|--|--|---|------------------------|--------------------------| | Tennessee | Bergmann USA
Gallatin, TN | Soil and
Sediment
Washing
Technology | George Jones
615-230-2217 | Demonstration | Completed 1995 | | | Brown and Root
Environmental/
Illinois Institute of
Technology
Oak Ridge, TN | Radio
Frequency
Heating | Clifton Blanchard
423-483-9900
Captain Jeff
Stinson
904-283-6254
Harsh Dev
312-567-4257 | Demonstration | Completed 1994 | | | IT Corporation
Knoxville, TN | Batch Steam Distillation and Metal Extraction | Stuart Shealy
423-690-3211 | Emerging
Technology | Completed
May 1992 | | | | Eimco Biolift
Slurry Reactor
as developed by
Tekno
Associates | Kandi Brown
423-690-3211 | Emerging
Technology | Completed 1992 | | | | Mixed Waste
Treatment
Process | Ed Alperin
615-690-3211 | Emerging
Technology | Completed 1995 | | | IT Corporation
Knoxville, TN | Photocalytic
and Biological
Soil
Detoxificaiton | Duane Graves
423-690-3211 | Emerging
Technology | Completed 1993 | | | WASTECH, Inc.
Oak Ridge, TN | Solidification/
Stabilization | Terrence Lyons
U.S. EPA
513-569-7859 | Demonstration | Completed
August 1991 | | Texas | EET, Inc.
Bellaire, TX | PCB/Metals
Extraction from
Porous Surfaces | Tim Tarrillion
713-662-0727 | Demonstration | Ongoing | | | ENSR Consulting Engineering and Larson Engineering Houston, TX | Bioventing, Air
Sparging,
Biological
Treatment for
Ground Water
(multi-
developer
project with the
State of New
York) | David Ramsden
(ENSR)
713-520-6802
N. Sathi-yakumar
716-272-7310 | Demonstration | Completed 1995 | | State | Developer | Technology | Contact | Program | Status | |----------|--|---|---|---|-----------------------------| | Texas | Filter Flow
Technology, Inc.
League City, TX | Heavy Metals
and
Radionuclide
Sorption
Method | Todd Johnson
281-332-3438 | Demonstration | Completed
September 1993 | | | Fugro Geosciences,
Inc.
Houston, TX | Laser Fluorescence PAH, BTEX Screening Cone Penetrometer | Andrew Taer
713-778-5580 | Monitoring and
Measuring
Technologies | Completed 1996 | | | Hanby
Environmental
Laboratory
Wimberly, TX | PCP Test Kit | John Hanby
512-847-1212 | Monitoring and
Measurement
Technologies | Completed 1993 | | | Hrubetz
Environmental
Services, Inc.
Dallas, TX | HRUBOUT .
Process | Barbara Hrubetz
Michael Hrubetz
214-363-7833 | Demonstration | Completed
February 1993 | | | Solidtech, Inc.
Houston, TX | Solidification
and
Stabilization | Jack Hubbard
U.S. EPA
513-569-7507 | Demonstration | Completed
December 1988 | | · | TN Spectrace
Round Rock, TX | Portable X-Ray
Fluorescence
Spectrometer | Peter Barry
512-388-9100 | Monitoring and Measuring Technologies | Completed 1995 | | | University of
Houston
Houston, TX | Concentrated
Salt Extraction
of Lead | Dennis Clifford
713-743-4266 | Emerging
Technology | Ongoing | | | Western Product
Recovery Group,
Inc.
Houston, TX | CCBA Physical
and Chemical
Treatment | Donald Kelly
713-493-9321
Bert Elkins
619-749-8856 | Emerging
Technology | Completed 1994 | | Utah | Phytokinetics, Inc.
North Logan, UT | Phytoremedia-
tion of Soils | Ari Ferro
801-750-0985 | Emerging
Technology | Ongoing | | | | • | | Demonstration | Ongoing | | Vermont | Green Mountain
Laboratories | Biodegradation
of PCBs in
Soils | Ronald Lewis 513-569-7856 | Demonstration | Ongoing | | Virginia | BWX Tech., Inc.
(Affiliate of Babcock
and Wilcox Co. | Cyclone
Furnace | Evan Reynolds
804-522-6000 | Emerging
Technology | Completed 1992 | | | Lynchburg, VA | | | Demonstration | Completed
November 1991 | | State | Developer | Technology | Contact | Program | Status | |------------|--|--|--|---|-------------------------| | Virginia | Dynaphore, Inc.
Richmond, VA | Removal of
Dissolved
Heavy Metals
via FORAGER
Sponge | Norman Rainer
804-288-7109 | Demonstration | Completed
April 1994 | | | ITT Industries
Roanoke, VA | Enhanced In-
Situ
Bioremediation
of Chlorinated
Compounds | Rosann
Kryczkowski
540-362-7356 | Demonstration | Ongoing | | Washington | Geosafe Corporation
Richland, WA | In-situ
Vitrification | James Hansen
Matthew Haass
509-375-0710 | Demonstration | Completed 1994 | | | Ionics/ Resources
Conservation Co.
Bellevue, WA | BEST Solvent
Extraction | William Heins
206-828-2400 | Demonstration | Completed July
1992 | | | Remediation
Technologies, Inc.
(ReTec) Seattle, WA | Methanotrophic
Biofilm Reactor | Hans Stroo
206-624-9349 | Emerging
Technology | Completed 1995 | | | | Liquid and Soils
Biological
Treatment | Merv Cooper
206-624-9349 | Demonstration | Completed 1994 | | | Scitec Corporation
Richland, WA | Field Portable
X-Ray
Fluorescence | Steve Santy
1-800-466-5323
509-783-9850 | Monitoring and
Measurement
Technologies | Completed 1995 | | | University of
Washington
Seattle, WA | Asdorptive
Filtration | Mark Benjamin
206-543-7645 | Emerging
Technology | Completed 1992 | |
Wisconsin | Svedala Industries
(formerly Allis
Mineral Systems)
Oak Creek, WI | Pyrokiln Thermal Encapsulation Process | Jim Kidd
414-798-6341
Glenn Heian
414-762-1190 | Emerging
Technology | Completed 1993 | | | University of
Wisconsin,
Madison, WI | Photoelectro-
catalytic
Treatment of
Metals and
Organics in
Water | Marc Anderson
608-262-2674
Charles Hill, Jr.
608-263-4593 | Emerging
Technology | Ongoing | | Wyoming | Western Research
Institute
Laramie, WY | Contained
Recovery of
Oily Wastes
(CROW) | Lyle Johnson
307-721-2281 | Emerging
Technology
Demonstration | Completed 1991 Ongoing | | Canada | Atomic Energy of
Canada, Limited
Chalk River, Ontario | Ultrasonic-Acid
Leachate
Treatment for
Mixed Wastes | Shiv Vijayan
613-583-3311
ext. 3220/6057 | Emerging
Technology | Completed | | State | Developer | Technology | Contact | Program | Status | |--------|---|--|---|---|----------------------------| | Canada | Atomic Energy of
Canada, Limited
Chalk River, Ontario | Chemical
Treatment and
Ultrafiltration | Leo Buckley
613-584-3311 | Emerging
Technology | Completed 1993 | | | Cone Tech
Investigations
Vancouver, British
Colombia | Resistivity, pH,
Seismic,
Temperature,
Cone
Penetrometer | Ward Phillips
604-327-4311 | Monitoring and
Measuring
Technologies | Completed 1992 | | | ELI Eco Logic
International, Inc.
Rockwood, Ontario
2 Demonstrations | Thermal Gas Phase Reduction and Thermal Desorption Process | Jim Nash
519-856-9591 | Demonstration | Completed
December 1992 | | | EnviroMetal
Technologies, Inc.
Guelph, Ontario
2 Demonstrations | Metal Enhanced
Abiotic
Degradation | Larry Kwicinski
519-824-0432 | Demonstration Ex-situ In-situ | Completed 1995 Ongoing | | | Grace Dearborn,
Inc.
Mississauga, Ontario | Daramend
Process | Alan Seech
Paul Bucen
905-272-7480 | Demonstration | Completed 1994 | | | Matrix Photocatalytic Limited (formerly Nutech Environmental) London, Ontario, Canada | TiO ₂ Photocatalytic Treatment of Aqueous Waste Streams | Bob Henderson
519-660-8669 | Emerging
Technology | Completed 1994 | | | Matrix
Photocatalytic
Limited | TiO ₂ Photocatalytic Air Treatment | Bob Henderson
519-660-8669 | Demonstration | Ongoing | | | Toronto Harbour
Comission
Toronto, Ontario | Soil Recycling | Teri Richardson
U.S. EPA
513-569-7949 | Demonstration | Completed
May 1992 | | | Wastewater
Technology Centre
Burlington, Ontario | Cross-Flow
Pervaporation
System | Chris Lipski
905-639-6320 | Emerging
Technology | Completed 1992 | | | Zenon Environmental Systems, Inc. Burlington, Ontario | Cross-Flow
Pervaporation
System | Phil Canning
Tony Tonelli
905-639-6320~ | Demonstration | Completed 1995 | | | EnviroMetal
Technologies, Inc. | In Situ Reactive
Barrier | John Vogan
519-824-0432 | Demonstration | Ongoing | | State | Developer | Technology | Contact | Program | Status | |---------------------------|--|---------------------------------------|--|---|--------------------------------------| | Canada | Zenon
Environmental
Systems, Inc.
Burlington, Ontario | ZenoGem
Process | Chris Lipski
905-639-6320 | Demonstration | Completed 1995 | | England/United
Kingdom | AEA Technology
(formerly Warren
Spring Laboratory)
Oxfordshire,
England | Physical and
Chemical
Treatment | Steve Barber
011-44-1235-
463062 | Emerging
Technology | Completed 1994 | | | Graseby Ionics,
Limited
Waterford Herts,
England | Ion Mobility
Spectrometry | John Brokenshire
011-44-1923-
816166
Martin Cohen
561-683-0507 | Measuring and
Monitoring
Technologies | Completed
Summer and
Fall 1990 | | Italy | Gruppo Italimpresse
(developed by Shirco
Infrared Systems,
Inc.) (formerly
ECOVA)
Rome, Italy
2 Demonstrations | Infrared
Thermal
Destruction | Laurel Staley
U.S. EPA
513-569-7863 | Demonstration | Completed
November 1987 | | Puerto Rico | Terra Vac, Inc.
San Juan, PR | In-situ Vacuum
Extraction | James Malot
787-725-8750 | Demonstration | Completed
April 198 | # Appendix B SITE TECHNOLOGY DEMONSTRATION SITES (Alphabetically by Demonstration Site State) #### **TECHNOLOGY DEMONSTRATION SITES - BY SITE STATE** | State | Demonstration
Location | Technology | Contact | Program | Status | |------------|--|--|---|---------------|--------------------------------| | Alaska | Fairbanks, AK
ABE
Superfund Site
(Region 10) | Soil Washing | Brice Environmental Services Corporation (BESCORP) Fairbanks, AK Craig Jones 907-452-2515 | Demonstration | Completed
September
1992 | | Arizona | Phoenix, AZ Pesticide Site (Region 9) | Thermal
Desorption | Smith Environmental Services (formerly Canonie) Porter, IN Joe Hutton 219-926-8651 | Demonstration | Completed
September
1992 | | | Phoenix, AZ
Williams AFB
(Region 9) | In-situ
Subsurface
Bioremediation | Bio-Rem
Butler, IN
David O. Mann
219-868-5823 | Demonstration | Completed
December
1993 | | Arkansas | Jefferson, AR
Incineration Research
Facility (IRF)
(Region 6) | Tunable-Pulse
Combustion | Sonotech, Inc.
Atlanta, GA
Ben Zinn
404-894-3033 | Demonstration | Completed
1995 | | | | Pyreton Burner
(Thermal
Destruction) | American Combustion Technologies Norcross, GA Gregory Gitman 404-564-4180 | Demonstration | Completed
January
1988 | | California | Burbank, CA
Lockheed Site
(Region 9) | Integrated In-situ
Vapor Extraction
and Steam
Vacuum
Stripping Process | Radian Corporation (formerly AWD Technologies, Inc.) Walnut Creek, CA David Bluestein 415-227-0822 | Demonstration | Completed
1993 | | | Edwards AFB, CA
(Region 9) | CAV-OX
Oxidation
Process | Magnum Water
Technology
El Segundo, CA
Dale Cox
310-640-7000 | Demonstration | Completed
March 1993 | | | Fresno, CA
Selma Site
(Region 9) | Silicate
Compounds by
Solidification/
Stabilizatioin | STC Omega
(formerly Silicate
Technology
Corporation)
Scottsdale, AZ
Steve Pegler
602-948-7100 | Demonstration | Completed
November
1990 | | State | Demonstration
Location | Technology | Contact | Program | Status | |------------|---|--|---|---------------|--------------------------| | California | Fullerton, CA McColl Superfund Site (Region 9) | Excavation and Foam Suppression of Volatiles | U.S. EPA
Region 9
San Francisco, CA
Jon Blevins
415-744-2400 | Demonstration | Completed
July 1990 | | | Huntington Beach,
CA
Rainbow Disposal
(Region 9) | Steam Injection/
Vacuum
Extraction
(SIVE) | Hughes Environmental Manhattan Beach, CA (No longer a vendor for SIVE) Paul De Percin U.S. EPA 513-569-7797 | Demonstration | Completed
August 1993 | | | Jackson, CA Pintail Systems, Inc. (Region 9) | Biological
Stabilization of
Arsenic in Soils | Pintail Systems,
Inc.
Aurora, CO
Leslie Thompson
303-367-8443 | Demonstration | Ongoing | | | Livermore, CA Lawrence Livermore National Laboratory (LLNL) (Region 9) | Chemical
Oxidation
Perox-Pure | Vulcan Peroxidation Systems, Inc. Tucson, AZ Chris Giggy 602-790-8383 | Demonstration | Completed
1995 | | | Livermore, CA
LLNL
(Region 9) | In-situ Enhanced
Extraction | Berkley Environmental Restoration (formerly Udell Technologies, Inc.) Kent Udell 510-653-9477 | Demonstration | Completed
1993 | | | March AFB, CA
(Region 9) | In-situ Air
Stripping | Roy Weston
Woodland Hills,
CA
Jeff Bannon
818-971-4900 | Demonstration | Completed
1994 | | | Port Hueneme, CA
Naval Facilities
Engineering Service
Center
(Region 9) | Solvated Electron
Treatment of
Chlorinated
Organics | Commodore
Environmental
Columbus, OH
Neil Dronby
614-297-0365 | Demonstration | Completed
1996 | | | Sacramento, CA
McClellan AFB
(Region 9) | Photolytic
Destruction for
SVE Off-gases | Process
Technologies, Inc.
Boise, ID
Michael Swan
208-385-0900 | Demonstration | Ongoing | | State | Demonstration
Location | Technology | Contact | Program | Status | |------------|--|--|---|-----------------|--------------------------------| | California | Sacramento, CA
McClellan AFB
(Region 9) | Groundwater
Extraction | Xerox Two Phase
Extraction
Ron Hess
716-422-3694 | Demonstration | Completed
February
1995 | | | San Diego, CA
Naval Air Station
North Island (NASNI)
(Region 9) | In Well Vapor
Stripping of
Ground Water
| MACTEC
Environmental,
Inc.
Pittsburgh, PA
Mark McGlathery
800-444-6221 | Demonstration | Ongoing | | | San Diego, CA
NASNI Site 9
(Region 9) | Cross-flow Pervaporation System for Removal of VOCs from Groundwater | Zenon Environmental, Inc. Burlington, Ontario, Canada Phil Canning 905-639-6320 | Demonstration . | Completed
1995 | | | San Francisco, CA
Westin Hotel
(Region 9) | GIS/KEY
Software for HW
Site
Data
Management | GIS Solutions,
Inc.
Concord, CA
Garry W. Reid
510-827-5400 | Demonstration | Completed
August 1993 | | | San Jose, CA
Lorentz Barrel and
Drum Site
(Region 9) | Ultraviolet
Ozone Treatment
for Liquids | Ultrox
International, Inc.
Santa Ana, CA
David Fletcher
562-490-4649 | Demonstration | Completed
May 19889 | | | San Pedro, CA
Annex Terminal
(Region 9) | In-situ Steam/
Air Stripping | Novaterra, Inc.
(formerly Toxic
Treatment, Inc.)
Torrance, CA
Phil La Mori
310-328-9433 | Demonstration | Completed
September
1989 | | | Santa Barbara, CA
Santa Marie Health
Care Services (UST
Site)
(Region 9) | Soil Washing/
Geological
Treatment | BioGenesis Enterprises (formerly BioVersal USA) Fairfax Station, VA Charles Wilde 703-250-3442 Mohsen Amiran 708-827-0024 | Demonstration | Completed
November
1992 | | | South El Monte, CA
(Region 9) | Gasification
Process | Texaco Syngas,
Inc.
White Plains, NY
John Winter
316-251-4000
ext. 536 | Demonstration | Completed
1994 | | State | Demonstration
Location | Technology | Contact | Program | Status | |----------|--|--|---|-------------------------------|-------------------------------| | Colorado | Clear Creek, CO
Burleigh Tunnel
(Region 8) | Wetland-Based
Treatment for
Mineral Mine
Drainage | Colorado Department of Health Denver, CO Jim Lewis 303-692-3390 | Demonstration | Ongoing | | | Denver, CO
Rocky Flats
(Region 8) | Colloid Polishing
Method | Filter Flow
Technology
League City, TX
Tod Johnson
713-334-6080 | Demonstration | Completed
November
1992 | | | Denver, CO
DOE Rocky Flats
(Region 8) | Core Barrel Soil
Sampler | Simulprobe
Technologies, Inc. | Monitoring and
Measurement | Completed | | | Denver, CO (Region 8) | Dual Tube Liner
Soil Sampler | Art's
Manufacturing and
Supply
American Falls, ID
Brian Anderson
800-635-7330 | Monitoring and
Measurement | Completed | | | Denver, CO
(Region 8) | Electrocoa-
gulation | General Environmental Inc. (formerly Hydrologics, Inc.) Englewood, CO Carl Dalrymple 303-761-6960 | Demonstration | Completed
1995 | | · | Denver, CO
(Region 8) | EMFLUX Soil
Gas Survey
System | Quadrel Services,
Inc. | Monitoring and
Measurement | Completed | | | Denver, CO
(Region 8) | Gore-Scrubber
Passive Soil Gas
Sampler | W. L. Gore and
Associates, Inc.
Elkton, MD
Ray
Fenstermacher
410-506-4780 | Monitoring and
Measurement | Completed | | | Denver, CO
(Region 8) | JMC
Environmentalist's
Subsoil Probe | Clements
Associates, Inc. | Monitoring and
Measurement | Completed | | | Denver, CO
(Region 8) | Large Bore Soil
Sampler | Geoprobe Systems | Monitoring and
Measurement | Completed | | | Rocky Flats, CO
(Region 8) | In-situ Reactive
Barrier | EnviroMetal
Technologies, Inc.
John Vogan
519-824-0432 | Demonstration | Ongoing | | State | Demonstration
Location | Technology | Contact | Program | Status | |----------|---|--|--|---------------|--------------------------------| | Florida | Brandon, FL
Peak Oil Superfund
Site
(Region 4) | Infrared
Incinerator | Grupo Italimprese
(Ecova Europa)
(formerly
ECOVA)
John Cioffi
206-883-1900 | Demonstration | Completed
August 1987 | | | Pensacola, FL
American Creosote
Works
(Region 4) | Filtration | SBP
Technologies, Inc.
Baton Rouge, LA
Clayton Page
504-753-5255 | Demonstration | Completed
1992 | | | Pensacola, FL
Escanbia Wood
Preserving Site
(Region 4) | Soil Washing | U.S. EPA Mobile
Volume Reduction
Unit
Cincinnati, OH
Richard Griffith
908-321-6629 | Demonstration | Completed
November
1992 | | Georgia | Chickamuga, GA and
Hopkinsville, GA
(Region 4) | Debris Washing
System | U.S. EPA
NRMRL
Cincinnati, OH
Donald Sanning
513-569-7875
Mike Taylor
512-782-4700 | Demonstration | Completed
August
1990 | | | Warner Robins, GA
Robins AFB
(Region 4) | Stabilization of
Organics | WASTECH, Inc.
Oak Ridge, TN
Benjamin Peacock
615-483-6515 | Demonstration | Completed
August
1991 | | Hawaii | Pearl Harbor, HI
(Region 9) | PCB/Metals
Extraction from
Porous Surfaces | EET Inc.
Bellaire, TX
Tim Tarrillion
713-662-0727 | Demonstration | Ongoing | | | Pearl Harbor, HI
Naval Facility
(Region 9) | Electrokinetics | Geokinetics
Steven H.
Schwartzkopf
415-424-3176 | Demonstration | Ongoing | | | Pearl Harbor, HI
Naval Facility
(Region 9) | Electrokinetic Flushing & Surfactant Flushing | Geokinetics and
Duke Engineering
Thomas
Holdsworth
U.S. EPA
523-569-7675 | Demonstration | Ongoing | | Illinois | Chicago, IL
(Region 4) | Hydraulic
Fracturing | U.S. EPA/
NRMRL
Cincinnati, OH
William Slack
513-556-2526 | Demonstration | Completed
September
1992 | | State | Demonstration
Location | Technology | Contact | Program | Status | |-----------|---|---|--|-------------------------------|---------------------------| | Illinois | Waukegan Harbor, IL
(Region 5) | Thermal
Desorption | SoilTech, ATP
Systems Inc.
Porter, IN
Joe Hutton
219-926-8651 | Demonstration | Completed
June
1992 | | Indiana | Gary, IN
Indiana Harbour
(Region 5) | Solvent
Extraction | Ionics/Resources
Conservation, Co.
Bellevue, WA
Bill Hines
206-828-2400 | Demonstration | Completed
July
1992 | | Iowa | Albert City, IA
(Region 7) | Core Barrel Soil
Sampler | Simulprobe
Technologies, Inc. | Monitoring and
Measurement | Completed | | · | Albert City, IA
(Region 7) | Dual Tube Liner
Soil Sampler | Art's
Manufacturing and
Supply
American Falls, ID
Brian Anderson
800-635-7330 | Monitoring and
Measurement | Completed | | | Albert City, IA
(Region 7) | EMFLUX Soil
Gas Survey
System | Quadrel Services,
Inc. | Monitoring and
Measurement | Completed | | | Albert City, IA
(Region 7) | Gore-Scrubber
Passive Soil Gas
Sampler | W. L. Gore and
Associates, Inc.
Elkton, MD
Ray
Fenstermacher
410-506-4780 | Monitoring and
Measurement | Completed | | | Albert City, IA
(Region 7) | JMC
Environmentalist's
Subsoil Probe | Clements
Associates, Inc. | Monitoring and
Measurement | Completed | | | Albert City, IA
(Region 7) | Large Bore Soil
Sampler | Geoprobe Systems | Monitoring and
Measurement | Completed | | Kansas | Bendena, KS
(Region 7) | Biological
Denitrification | Eco Mat, Inc.
Hayward, CA
Kim Halley
510-783-5885 | Demonstration | Ongoing | | Kentucky | Paducah, KY Gaseous Diffustion Plant (Region 4) | In-situ Electroosmosis of TCE in Soil/ Groundwaters "Lasagna" Process | Monsanto/Dupont
Thomas
Holdsworth
513-569-7675 | Demonstration | Completed
1998 | | Louisiana | Fort Polk, LA
(Region 6) | Electrokinetic
Extraction | Electrokinetics,
Inc.
Baton Rouge, LA
Elif Acar
504-388-3992 | Demonstration | Ongoing | | State | Demonstration
Location | Technology | Contact | Program | Status | |---------------|--|--|---|-------------------------------|-------------------------------| | Massachusetts | Bostion, MA
(Region 1) | AMS Split Core
Sampler | Art's
Manufacturing and
Supply
Brian Anderson
800-635-7330 | Monitoring and Measurement | Ongoing | | | Bostion, MA
(Region 1) | Russian Peat
Borer | Aquatic Research
Instruments
Will Young
208-768-2222 | Monitoring and
Measurement | Ongoing | | | New Bedford, MA
(Region 1) | Solvent
Extraction | CF Systems
Corporation
Westminister, CO
L.V. Benningfield
303-420-1550 | Demonstration | Completed
December
1988 | | | North Dartsmouth,
MA
Resolve Superfund
Site
(Region 1) | Thermal
Desorption | OHM Environmental (formerly Chemical Waste Management Inc.) Geneva, IL Dick Ayen 803-846-241 | Demonstration | Completed
May
1992 | | Michigan | Adrian, MI
Anderson
Development
(Region 5) | Thermal
Desorption
(physical) | Roy F. Weston,
Inc.
West Chester, PA
Michael Cosmos
215-430-7423 | Demonstration | Completed
December
1992 | | | Bay City, MI
Bay City Municipal
Landfill
(Region 5) | Thermal Gas Phase Reduction Process and Thermal Desorption | ELI Eco Logic
International, Inc.
Rockwood,
Ontario,
Canada
Jim Nash
519-856-9591 | Demonstration | Completed
December
1992 | | | Buchanan, MI
Electro-Voice
(Region 5) |
Subsurface
Volatilization
and Ventilation
System (SVVS) | Billings &
Associates, Inc.
Albuquerque, NM
Gale Billings
505-345-1116 | Demonstration | Completed
May
1994 | | | Detroit, MI
(Region 5) | Debris Washing
System | U.S. EPA/
NRMRL
Cincinnati, OH
Donald Sanning
513-569-7444 | Demonstration | Completed
August
1990 | | | Essexville, MI
Saginaw Bay
Confined Disposal
Facility
(Region 5) | Sediment Soil
Washing | Bergmann, USA
Gallatin, TN
Richard Traver
615-452-5500 | Demonstration | Completed
May
1992 | | State | Demonstration
Location | Technology | Contact | Program | Status | |-------------|---|--|---|---------------|--------------------------------| | Michigan | Grand Ledge, MI
Parsons Chemical Site
(Region 5) | In-situ
Vitrification | Geosafe
Corporation
Richland, WA
James Hansen
509-375-0710 | Demonstration | Completed 1994 | | | Rose Township, MI (Region 5) | Infrared
Incinerator | Grupo Italimprese
(Ecova Europa)
(formerly
ECOVA)
Jon Cioffi
206-883-1900 | Demonstration | Completed
1987 | | Minnesota | McGillis & Gibbs
Superfund Site, MN
(Region 5) | Biotreatment of
Groundwater | BioTrol, Inc.
Eden Prairie,
MN
Dennis Chilcote
612-942-8032 | Demonstration | Completed
September
1989 | | | McGillis & Gibbs
Superfund Site, MN
(Region 5) | Soil Washing | BioTrol, Inc.
Eden Prairie, MN
Dennis Chilcote
612-942-8032 | Demonstration | Completed
October
1989 | | | Minneapolis, MN
Private Oil Refining
Company
(Region 5) | Soil Washing/
Biological
Treatment | BioGenesis Enterprises, Inc. (formerly BioVersal USA) Fairfax Station, VA Charles Wilde 703-250-3442 Mohsen Amiran 708-827-0024 | Demonstration | Completed
November
1992 | | | New Brighton, MN Twin Cities Army Ammunition Plant (TCAAP) (Region 5) | Removal of Lead
from Soils | COGNIS
TARRAMET
Goss, MO
Lou Magdits
573-626-3476 | Demonstration | Completed
1994 | | Minnesota | St. Louis Park, MN
(Region 5) | Bioventing
(air-injection) | U.S.
EPA/NRMRL
Cincinnati, OH
Paul McCauley
513-569-7444 | Demonstration | Completed
Fall
1997 | | Mississippi | Brookhaven, MS
Brookhaven Wood
Preserving
(Region 4) | Fungus
Treatment
Technology | U.S. EPA/NRMRL USDA-Forest Products Lab Madison, WI Richard Lamar 608-231-9469 | Demonstration | Completed
1991 | | State | Demonstration
Location | Technology | Contact | Program | Status | |---------------|---|---|---|---------------|-------------------------------| | Montana | Butte, MT
Butte-Silverbow Site
(Region 8) | Plasma Heat | Retech, Inc.
Ukiah, CA
R.C. Eschenback
707-462-6522 | Demonstration | Completed
July 1991 | | | Mike Horse Mine, MT
(Region 8) | Grouting
Technique | Morrison Knudsen
Corporation
Boise, ID
208-386-6115 | Demonstration | Completed
1996 | | | St. Louis, MT
Welldon Spring
(Region 7) | Anaerobic
Biological
Destruction of
TNT in Soil | J.R. Simplot
Company
Pocatello, ID
Dr. Kaake
208-234-5367 | Demonstration | Completed
February
1994 | | Nebraska | Hastings, NE
(Region 7) | Spray Irrigation | University of Nebraska- Lincoln Hasting, NE Roy Spalding 402-783-3931 | Demonstration | Completed
July 1996 | | Nevada | Battle Mountain, NV
(Region 9) | Biodegradation
of Cyanide | Pintain Systems,
Inc.
Aurora, CO
Caren Caldwell
303-367-8443 | Demonstration | Ongoing | | New Hampshire | Plaistow, NH
(Region 1) | Biodegradation
of PCB's in Soils | Green Mountain
Laboratories
Montpelier, VT
Adam Longee
802-223-1468 | Demonstration | Ongoing | | New Jersey | Edison, NJ
EPA
(Region 2) | Solvent Extraction Carver- Greenfield Process | Dehydro Tech
Corporation
East Hanover, NJ
Thomas Holcombe
210-887-2182 | Demonstration | Completed
August
1991 | | | Hillsborough, NJ
(Region 2) | Pneumatic
Fracturing,
Extraction and
Hot Gas Injection | Accutech, Inc.
Keyport NJ &
New Jersey
Institute of
Technology,
Newark, NJ
Lohn Liskowitz
908-739-6444 | Demonstration | Completed
August 1992 | | | Millville, NJ
Nascoilte Site
(Region 2) | Bioreactor
Integrated with
an Ultrafiltration
Membrane
System | Zenon Environmental, Inc. Burlington, Ontario, Canada Anthony Tonelli 416-639-6320 | Demonstration | Completed
1995 | | State | Demonstration
Location | Technology | Contact | Program | Status | |------------|---|---|---|---------------|-------------------------------| | New Jersey | Morganville, NJ
Imperial Oil Co., Inc.
Site
(Region 3) | Solidification | Solidtech, Inc.
Houston, TX
Bill Stallworth
713-497-8558 | Demonstration | Completed
December
1988 | | | Pedricktown, NJ
National Lead
Industries
(Region 2) | Removal of
Dissolved Metals | Dynaphore/
Forager Sponge
Richmond, VA
Norman Rainer
804-288-7109 | Demonstration | Completed
April
1994 | | | Trenton, NJ
(Region 2) | Phytoextraction
of Metal from
Soil | Phytotech, Inc.
Monmouth, NJ
Burt Ensley
908-438-0900 | Demonstration | Ongoing | | | Wayne, NJ
(Region 2) | Ex-situ Metal-
enhanced Abiotic
Degredation | EnviroMetal
Technologies, Inc.
Guelph, Ontario
John Vogan
519-824-0432 | Demonstration | Completed 1995 | | New Mexico | Albuquerque, NM
(Region 6) | Electrokenitic
Extraction in
Unsaturated Soils | Sandia National
Laboratories,
Albuquerque, NM
Eric Lindgren
505-844-0543 | Demonstration | Ongoing | | New York | Brant, NY
Wide Beach
(Region 2) | Thermal
Desorption
Dechlorination | SoilTech, ATP
Systems, Inc.
Porter, IN
Joe Hutton
219-926-8651 | Demonstration | Completed
June 1992 | | | Brockport, NY
Sweden-3 Chapman
Site
(Region 2) | Biovault, Bioventing and Groundwater Circulation Biological Treatment Process | NY State Bioremediation and SBP Technologies, Inc. White Plains, NY Clayton Page 504-755-7711 | Demonstration | Completed
1995 | | | Niagara Falls, NY
(Region 2) | Cold Top
Vitrification | New Jersey Institute of Technology (NJIT) Newark, NJ and Geo Tech Development Corporation, King of Prussia, PA William Librizzi 201-596-5846 Thomas Tate 610-337-8515 | Demonstration | Ongoing | | State | Demonstration
Location | Technology | Contact | Program | Status | |----------------|--|---|---|---------------|--------------------------------| | New York | Upstate NY
(Region 2) | In-situ Metal-
enhanced Abiotic
Degredation | EnviroMetal
Technologies, Inc.
Guelph, Ontario
John Vogan
519-824-0432 | Demonstration | Ongoing | | | Utica, NY
(Region 2) | High
Temperature
Thermal
Processor | Maxymillian Technologies, Inc. (Formerly Clean Berkshires) Lanesboro, MA Jim Maxymillian 413-499-3050 | Demonstration | Completed
1994 | | | Utica, NY
Town Gas Site
(Region 2) | Slurry
Biodegradation | Remediation Technologies Inc. (ReTec) (formerly Mo Tec Inc.) Pitsburgh, PA David Nakles 412-380-0140 | Demonstration | Completed
1991 | | North Carolina | Morrisville, NC
Koppers Site
(Region 4) | Base-Catalyzed
Destruction
(Dehalogenation) | U.S. EPA/
NRMRL
Cincinnati, OH
George Huffman
513-569-7341
Environmental
Inc.
Blue Bell, PA
Yei-Shong Shieh
215-832-0700 | Demonstration | Completed
August 1993 | | Ohio | Aliance, OH Babcock & Wilcox Alliance Research Center (Region 5) | Cyclone
Vitrification | Babcock &
Wilcox Alliance
Research Center
Alliance, OH
Lawrence King
216-829-7576 | Demonstration | Completed
1991 | | | Cincinnati, OH
EPA T&E Facility
(Region 5) | Bioslurry Reactor | ECOVA
Corporation
Redmond, WA
Alan Jones
206-883-1900 | Demonstration | Completed
1991 | | | Crooksville, OH
Pintail Systems, Inc.
(Region 5) | Biostabilization
of Lead | Pintail Systems,
Inc.
Aurora, CO
Leslie Thompson
303-367-8443 | Demonstration | Ongoing | | | Dayton, OH
(Region 5) | Hydraulic
Fracturing | U.S. EPA/
NRMRL
Cincinnati, OH
William Slack
513-556-2526 | Demonstration | Completed
September
1992 | ### TECHNOLOGY DEMONSTRATION SITES - BY SITE STATE (continued) | State | Demonstration
Location | Technology | Contact | Program | Status | | |--------------|---|---|---|---------------|------------------------------|--| | Ohio | DOE Fernald Facility,
OH
(Region 5) | Solvent
Extraction | Terra Kleen
Corporation (name
changed back from
Sevenson
Extraction
Technology,
Inc.)
Alan Cash
619-552-9902 | Demonstration | Completed
1997 | | | Oregon | Clackamas, OR Portable Equipment Co. Site (Region 10) | Chemical
Fixation/
Stabilization | Advanced Remediation Mixing, Inc. (formerly Chemfix Technologies, Inc.) Metarie, LA Sam Pizzitola 504-461-0466 | | Completed
March
1989 | | | Pennsylvania | Douglassville, PA
(Region 3) | Solidification/
Stabilization | Hazcon and Funderburk & Associates) Fairfield, TX Ray Funderburk 813-645-9620 | Demonstration | Completed
October
1987 | | | Pennsylvania | Palmerton, PA Palmerton Zinc Pile (Region 3) | Membrane
Microfiltration | E.I. DuPont DeNemours & Company Newark, DE Oberlin Filter Company Waukesha, WI Ernest Mayer 302-366-3652 | Demonstration | Completed
May 1990 | | | | Stroudsburg, PA
(Region 3) | Contained
Recovery of Oil
Wastes | Western Research
Institute
Laramie, WY
James Speight
307-721-2011 | Demonstration | Completed
August
1997 | | | Rhode Island | Central Landfill,
RI
(Region 1) | Reverse Osmosis:
Disc-
Tube Module
Technology | ROCHEM
Separations, Inc.
Torrence, CA
David LaMonica
310-370-3160 | Demonstration | Completed
August 1994 | | | | N. Smithfield, RI
(Region 1) | AIR II
Photocatalytic
Technology for
Air Streams | KSE, Inc.
Amhurst, MA
James Kittrell
413-549-5506 | Demonstration | Ongoing | | ### TECHNOLOGY DEMONSTRATION SITES - BY SITE STATE (continued) | State | Demonstration
Location | Technology | Contact | Program | Status | |----------------|--|---|---|---------------|-------------------------------| | South Carolina | Savannah River Site,
SC
(Region 4) | High Energy Irradiation for Destruction of Organics in Aqueous Solutions and Sludge | High Voltage Environmental Application, Inc. Florida and International University Miami, FL William Cooper 305-348-3049 | Demonstration | Completed
1994 | | Tennessee | Oak Ridge, TN
(Region 4) | Photocatalytic
Aqueous Phase
Organics
Destruction
Matrix | Matrix, Inc.
London, ON
Robert Henderson
519-660-8669 | Demonstration | Completed 1995 | | | Oak Ridge, TN
DOE Oak Ridge
Facility
(Region 4) | Freeze Barrier | Arctic
Foundations
Anchorage, AK
Ed Yarmak
907-562-2741 | Demonstration | Ongoing | | Texas | Fort Worth, TX
Carswell AFB
(Region 6) | Phytoremediation
of TCE in
Groundwater | ASC/EMR
Wright Patterson
AFB
Greg Harvey
513-255-7718 | Demonstration | Ongoing | | | San Antonio, TX
Kelly AFB
(Region 6) | Hot Air Injection | Hrubetz Evironmental Services, Inc. Dallas, TX Michael or Barbara Hrubetz 214-691-8545 | Demonstration | Completed
February
1993 | | | San Antonio, TX
Kelly AFB
(Region 6) | Radio-
frequency
Heating | IITRI/NUS
IITRI-Chicago, IL
and Haliburton/
NUS
Oak Ridge, TN
Clifford Blanchard
615-483-9900 | Demonstration | Completed
1994 | | | San Antonio, TX
Kelly AFB
(Region 6) | Radio-
frequency
Heating | KAI/HNUS
Oak Ridge, TN
Cliff Blanchard
615-483-9900 | Demonstration | Completed
1994 | | Utah | Hill AFB, UT
(Region 8) | Steam Injection/
Vacuum
Extraction | Praxis Environmental Services San Francisco, CA Dr. Lloyd Steward 415-641-9044 | Demonstration | Ongoing | ### TECHNOLOGY DEMONSTRATION SITES - BY SITE STATE (continued) | State | Demonstration
Location | Technology | Contact | Program | Status | | |---------------------------|---|---|--|-------------------------------|---------------------------|--| | Utah | Ogden, UT
Chevron Transfer
Facility
(Region 8) | Phytoremediation
of Petroleum in
Soil and
Groundwater | Phytokinetics, Inc.
Logan, UT
Ari Ferro
801-750-0985 | Demonstration | Ongoing | | | Virginia | Roanoke, VA
ITT Night Vision
Facility
(Region 3) | Enhanced In-situ
Bioremediation
of Chlorinated
Compounds | ITT Industries
Roanoke, VA
Rosann
Kryczkowski
540-362-7356 | Demonstration | Ongoing | | | Washington | Ellensburg, WA
(Region 10) | Anaerobic
Biological
Destruction of
Dinoseb in Soil | J. R. Simplot
Company
Pocatello, ID
Dr. Kaake
208-234-5367 | Demonstration | Completed
July
1993 | | | Wisconsin | Green Bay, WI
(Region 5) | AMS Split Core
Sampler | Art's Monitoring and Manufacturing and Measurement Supply Brian Anderson 800-635-7330 | | Ongoing | | | | Green Bay, WI
(Region 5) | Russian Peat
Borer | Aquatic Research
Instruments
Will Young
208-768-2222 | Monitoring and
Measurement | Ongoing | | | Wisconsin · | Sparta, WI
U.S. DOD
Fort McCoy
(Region 5) | MAECTITE®
Treatment
Process | Sevenson Environmental Services, Inc. Munster, IN Chuck McPheeters 219-836-0116 | Demonstration | Ongoing | | | Various locations in U.S. | 10 sites around the nation | Alternate Cover
Assessment
Program (ACAP) | U.S. EPA
NRMRL | Demonstration | Ongoing | | | Canada | Toronto, Canada
Toronto Port
Industrial Division | Treatment Train
for Contaminated
Soils | Toronto Harbor Commissioners Toronto, Canada Dennis Lang 416-863-2047 | | Completed
May 1992 | | | | Trenton, Ontario
Domtar Wood
Preserving Site | Bioremediation | GRACE Bioremediation Technologies Mississauga, Ontario, Canada Alan Seech 905-272-7480 | Demonstration | Completed
1994 | | ### Appendix C **PUBLICATIONS - INFORMATION TRANSFER PRODUCT DESCRIPTIONS** ### Documents from the ### US EPA National Risk Management Research Laboratory Land Remediation & Pollution Control Division Measuring & Monitoring Program General Publications - SITE Program: Annual Report to Congress 1995 (EPA/540/R-97/508) - SITE Profiles, Ninth Edition (EPA/540/R-97/502) - Survey of Materials Handling Technologies Used at Hazardous Waste Sites (EPA/540/2-91/010) PB91-921283² - Superfund Innovative Technology Evaluation Program: Innovation Making a Difference (EPA/540/F-94/505) - Superfund Innovative Technology Evaluation Program: Technology with an Impact (EPA/540/F-93/500) - Interim Status Report U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites (EPA/540/R-94/500) PB94-164811² - SITE Innovation on the Move (EPA/540/F-97/500) - Land Remediation & Pollution Control Division; Science and Technology to Treat Contaminated Soils, Sludge & Sediments (EPA/504/F-98/501) PB92-222215² - Technology Evaluation Vol. 11 (EPA/540/R-92/017B) PB92-222223² ### **Demonstration Project Results** ## Accutech Remedial Systems, Inc.—Pneumatic Fracturing Extraction and Hot Gas Injec., Phase 1 - Technology Evaluation (EPA/540/R-93/509) PB93-216596² - Technology Demo. Summary (EPA/540/SR-93/509)³ - Demonstration Bulletin (EPA/540/MR-93/509)³ - Applications Analysis (EPA/540/AR-93/509) PB94-117439² ### American Combustion, Inc. - Oxygen Enhanced Incineration - Technology Evaluation (EPA/540/5-89/008) - Applications Analysis (EPA/540/A5-89/008) - Technology Demo. Summary (EPA/540/S5-89/008)³ - Demonstration Bulletin (EPA/540/M5-89/008)³ ## AWD Technologies, Inc. - Integrated Vapor Extraction and Steam Vacuum Stripping - Applications Analysis (EPA/540/A5-91/002) PB92-218379² - Demonstration Bulletin (EPA/540/M5-91/002)³ ### Babcock & Wilcox Co-Cyclone Furnace Vitrification - Technology Evaluation Vol. 1 (EPA/540/R-92/017A) PB92-222215² - Technology Evaluation Vol. 11 (EPA/540/R-92/017B) PB92-222223² - Applications Analysis (EPA/540/AR-92/017) PB93-122315² - Technology Demo. Summary (EPA/540/SR-92/017)³ • Demonstration Bulletin (EPA/540/MR-92/011) ### Bergman USA - Soil and Sediment Washing System - Demonstration Bulletin (EPA/540/MR-92/075)³ - Applications Analysis (EPA/540/AR-92/075) # Biogenesis Enterprises, Inc. - Soil and Sediment Washing Processes - Demonstration Bulletin (EPA/540/MR-93/510) - Innovative Tech. Eval. Report (EPA/540/R-93/510) - SITE Technology Capsule (EPA/540/SR-93/510) ### Bio-Rem, Inc. - Augmented In-Situ Subsurface Biorem Process Demonstration Bulletin (EPA/540/MR-93/527)³ #### BioTrol - Biological Aqueous Treatment System - Technology Evaluation (EPA/540/5-91/001) PB92-110048² - Applications Analysis (EPA/540/A5-91/001) PB91-227983² - Technology Demo. Summary (EPA/540/S5-91/001)³ - Demonstration Bulletin (EPA/540/M5-91/001)³ #### - Soil Washing System 3 Out of stock - Technology Evaluation Vol. 1 (EPA/540/5-91/003a) PB92-115310² - Technology Evaluation Vol. 11 Part A (EPA/540/5-91/003b) PB92-115328² - Technology Evaluation Vol. 11 Part B (EPA/540/5-91/003c) PB92-115336² - Applications Analysis (EPA/540/A5-91/003) PB92-115245² - Technology Demo. Summary (EPA/540/S5-91/003) Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. Documents with a PB number are out of stock and must be ordered by that number at cost from: National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650 or 1-800-553-6847 #### PB92-224393² Demonstration Bulletin (EPA/540/M5-91/003)³ ### Brice Environmental Services Corporation - Bescorp Soil Washing System Battery Enterprises Site - Demonstration Bulletin (EPA/540/MR-93/503)³ - Applications Analysis (EPA/540/AR-93/503) PB95-199741² ### Brown and Root Environmental - Subsurface Volatilization and Ventilation System - Demonstration Bulletin (EPA/540/MR-94/529) - Capsule (EPA/540/R-94/529a) - Innovative Tech. Eval. Report (EPA/540/R-94/529) ### Canonie Environmental Services Corporation -
Low Temperature Thermal Aeration (LTTA) - Demonstration Bulletin (EPA/540/MR-93/504)³ - Applications Analysis (EPA/540/AR-93/504) ### CF Systems Corporation - Liquified Gas Solvent Extraction - Technology Evaluation Vol. 1 (EPA/540/5-90/002) - Technology Evaluation Vol. 11 (EPA/540/5-90/002a) PB90-186503² - Applications Analysis (EPA/540/A5-90/002) - Technology Demo. Summary (EPA/540/S5-90/002) # Chemfix Technologies, Inc. (Now Advanced Remediation Mixing, Inc.) - Chemical Fixation/Stabilization - Technology Evaluation Vol. 1 (EPA/540/5-89/011a) PB91-127696² - Technology Evauation Vol.11 (EPA/540/5-89/011b) PB90-274127² - Applications Analysis (EPA/540/A5-89/011) - Technology Demo. Summary (EPA/540/S5-89/011) PB91-921373² - Demonstration Bulletin (EPA/540/M5-89/011)³ ### Chemical Waste Management, Inc. - X-TRAX Thermal Desorption System (Now OHM Environmental) Demonstration Bulletin (EPA/540/MR-93/502)³ ### Cognis, Inc. Removal of Lead from Soils Demonstration Bulletin (EPA/540/MR-95/535) ### Dehydro-Tech Corporation - Carver - Greenfield Process - Technology Evaluation (EPA/540/R-92/002) PB92-217462² - Applications Analysis (EPA/540/AR-92/002) - Technology Demo. Summary (EPA/540/SR-92/002) - Demonstration Bulletin (EPA/540/MR-92/002) ### Dupont/Oberlin - Membrane Microfiltration System - Technology Evaluation (EPA/540/5-90/007) - PB92-153410² - Applications Analysis (EPA/540/A5-90/007) PB92-119023² - Technology Demo. Summary (EPA/540/S5-90/007) PB92-22435² - Demonstration Bulletin (EPA/540/M5-90/007)³ ### Dynaphore, Inc. - Forager Sponge Technology - Demonstration Bulletin (EPA/540/MR-94/522) - Capsule (EPA/540/R-94/522a) PB95-213229² - Innovative Tech. Eval. Rept. (EPA/540/R-94/522) PB95-268041² # ECOVA Corporation - Bioslurry Reactor [Pilot-Scale Demonstration of Slurry-Phase Biological Reactor for Creosote-Contaminated Wastewater] - Technology Evaluation Vol. 1 (EPA/540/5-91/009) PB93-205532² - Applications Analysis (EPA/540/A5-91/009) PB94-124039² - Technology Demo. Summary (EPA/540/S5-91/009) - Demonstration Bulletin (EPA/540/M5-91/009)³ ### ELI Eco Logic International, Inc. - GasPhase Chemical Reduction - Demonstration Bulletin (EPA/540/MR-93/522)³ - Technology Evaluation Vol. 1 (EPA/540/R-93/522a) PB95-100251² - Technology Evaluation Appendices (EPA/540/R-93/522b) PB95-100251² - Applications Analysis (EPA/540/AR-93/522) - Technology Demo. Summary (EPA/540/SR-93/522) #### - Thermal Desorption Unit - Demonstration Bulletin (EPA/540/MR-94/504)³ - Applications Analysis (EPA/540/AR-94/504) ### EnviroMetal Technologies, Inc. - Metal-Enhanced Abiotic Degradation Technology - Demonstration Bulletin (EPA/540/MR-95/510)³ - Capsule (EPA/540/R-96/503a) - Innovative Tech. Eval. Rept. (EPA/540/R-96/503) ### EPOC Water, Inc. - Microfiltration Technology - Demonstration Bulletin (EPA/540/MR-93/513)³ - Applications Analysis (EPA/540/AR-93/513) ### Filter Flow Technology, Inc. - Colloid Polishing Filter Method - Demonstration Bulletin (EPA/540/MR-94/501) - Capsule (EPA/540/R-94/501a) PB95-122792² - Innovative Tech. Eval. Rept. (EPA/540/R-94/501) ### GeoTech Development Corporation - Cold Top Vitrification Demonstration Bulletin (EPA/540/MR-97/506) ### Geosafe Corporation - In-Situ Vitrification - Demonstration Bulletin (EPA/540/MR-94/520)³ - Capsule (EPA/540/R-94/520a) PB95-177101² 3 Out of stock Innovative Tech. Eval. Rept. (EPA/540/R-94/520) ¹Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. ²Documents with a PB number are out of stock and must be ordered by that number at cost from: National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650 or 1-800-553-6847 ### GIS/Solutions, Inc. - GIS/KEY Environmental Data Management System - Demonstration Bulletin (EPA/540/MR-94/505)³ - Capsule (EPA/540/SR-94/505)³ - Innovative Tech. Eval. Rept. (EPA/540/R-94/505) PB95-138319² ### **Grace Dearborn Bioremediation Technology** - Demonstration Bulletin (EPA/540/MR-95/536) - Capsule (EPA/540/R-95/536a) - Innovative Tech. Eval. Rept. (EPA/540/R-95/536) # Gruppa Italimpresse (developed by Shirco Infrared Systems, Inc.) - Infrared Incineration - Technology Evaluation Peake Oil Vol. 1 (EPA/540/5-88/002a) PB89-125991² - Technology Evaluation Report Peake Oil Vol. 11 (EPA/540/5-88/002b) PB89-116024² - Technology Evaluation Rose Township (EPA/540/5-89/007a) PB89-167902² - Technology Evaluation- Rose Township Vol. 11 (EPA/540/5-89/007b) PB89-167910² - Applications Analysis (EPA/540/A5-89/010) PB89-233423² - Technology Demo Summary (EPA/540/S5-89/007)³ - Demonstration Bulletin (EPA/540/M5-88/002)³ # Hazcon, Inc. (now Funderburk and Assoc.) - Solidification Process - Technology Evaluation Vol. 1 (EPA/540/5-89/001a) PB89-158810² - Technology Evaluation Vol. 11 (EPA/540/5-89/001b) PB89-158828² - Applications Analysis (EPA/540/A5-89/001) PB89-206031² - Technology Demo Summary (EPA/540/S5-89/001)³ - Demonstration Bulletin (EPA/540/M5-89/001)³ ### High Voltage Environmental Applications, Inc. - Demonstration Bulletin (EPA/540/MR-96/504) - Innovative Tech. Eval. Rept. (EPA/540/R-96/504) ### Horsehead Resource Development Co., Inc. - Flame Reactor - Technology Evaluation Vol. 1 (EPA/540/5-91/005) PB92-205855² - Applications Analysis (EPA/540/A5-91/005) PB92-213214² - Technology Demo Summary (EPA/540/S5-91/005) - Demonstration Bulletin (EPA/540/M5-91/005) ## Hrubetz Environmental Services, Inc. - HRUBOUT Process Demonstration Bulletin (EPA/540/MR-93/524)³ ### Hughes Environmental Systems, Inc. - Steam Enhanced Recovery Process - Demonstration Bulletin (EPA/540/MR-94/510)³ - Capsule (EPA/540/R-94/510a) ### Innovative Tech. Eval. Rept. (EPA/540/R-94/510) # IT Research Institute (Brown and Root Environmental, Inc.) - Radio Frequency Heating - Demonstration Bulletin (EPA/540/MR-94/527) - Capsule (EPA/540/R-94/527a) - Innovative Tech. Eval. Rept. (EPA/540/R-94/527) ### International Waste Technologies/Geo-Con, Inc. - In-Situ Solidification and Stabilization Process - Technology Evaluation Vol. 1 (EPA/540/5-89/004a) PB90-194161² - Technology Evaluation Appendices (EPA/540/R-93/522b) PB95-100251² - Technology Evaluation Vol. 11 (EPA/540/5-89/004b) PB89-194179² - Technology Evaluation Vol. 111 (EPA/540/5-89/004c) PB90-269069² - Technology Evaluation Vol. 1V (EPA/540/5-89/004d) PB90-269077² - Applications Analysis (EPA/540/A5-89/004) PB90-269085² - Technology Demo. Summary (EPA/540/S5-89/004)³ - Technology Demo. Summary, Update Report (EPA/540/S5-89/004a)³ - Demonstration Bulletin (EPA/540/M5-89/004)³ # KAI Technologies Inc./Brown and Root Environmental Radio Frequency Heating - Demonstration Bulletin (EPA/540/MR-94/528) - Capsule (EPA/540/R-94/528a) - Innovative Tech. Eval. Report (EPA/540/R-94/528) ## Magnum Water Technology - CAV-OX Ultraviolet Oxidation Process - Demonstration Bulletin (EPA/540/MR-93/520)³ - Applications Analysis (EPA/540/AR-93/520) PB94-189438² - Technology Evaluation (EPA/540/R-93/520) PB95-166161² - Technology Demo Summary (EPA/540/SR-93/520)³ ### Matrix Photocatalytic Ltd. - Photocatalytic Aqueous Phase Organics Destruction Process • Innovative Tech. Eval. Report (EPA/540/R-97/503) # Maxymillian Technologies (formerly Clean Berkshires, Inc.) - Thermal Desorption System - Demonstration Bulletin (EPA/540/MR-94/507) - Capsule (EPA/540/R-94/507a) PB95-122800² ### New Jersey Institute of Technology - Cold Top Vitrification Process • Demonstration Bulletin (EPA/540/MR-97/506) # New York State Multi-Vendor Bioremediation: - ENSR Consulting & Engineering/Larson Engineers Ex-Situ Biovault • Demonstration Bulletin (EPA/540/MR-95/524) Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. Documents with a PB number are out of stock and must be ordered by that number at cost from: National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650 or 1-800-553-6847 ³ Out of stock ### - R.E. Wright Environmental Inc. - In-Situ Bioremediation System • Demonstration Bulletin (EPA/540/MR-95/525) ### North American Technologies Group, Inc. - SFC Oleofiltration System - Demonstration Bulletin (EPA/540/MR-94/525) - Capsule (EPA/540/R-94/525a) PB95-167227² - Innovative Tech. Eval. Rept. (EPA/540/R-94/525) ### Ogden Environmental Services, Inc. (now General Atomics) - Ogden Circulating Bed Combustor - Demonstration Bulletin (EPA/540/MR-92/001)³ - Technology Evaluation (EPA/540/R-92/001) PB92-227289² # Peroxidation Systems, Inc. (now Calgon Carbon Oxidation Technologies) - Perox-Pure[™] Chemical Oxidation - Demonstration Bulletin (EPA/540/MR-93/501)³ - Applications Analysis (EPA/540/AR-93/501) PB94-130325² - Technology Evaluation (EPA/540/R-93/501) PB93-213528² - Technology Demo Summary (EPA/540/SR-93/501)³ #### Resources Conservation Company - The Basic Extractive Sludge Treatment (B.E.S.T.) - Solvent Extraction - Demonstration Bulletin (EPA/540/MR-92/079)³ - Applications Analysis (EPA/540/AR-92/079) - Technology Evaluation -Vol. 1 (EPA/540/R-92/079a) PB93-227122² - Technology Evaluation Vol. 11, Part 1 (EPA/540/R-92/079b) PB93-227130² - Technology Evaluation Vol. 11, Part 2 (EPA/540/R-92/079c) PB93-227148² - Technology Evaluation Vol. 11, Part 3 (EPA/540/R-92/079d) PB93-227155² - Technology Demo Summary (EPA/540/SR-92/079) ### Retech, Inc. - Plasma Centrifugal Furnace (Plasma Arc Vitrification) - Demonstration Bulletin (EPA/540/M5-91/007) - Technology Evaluation -Vol. 1 (EPA/540/5-91/007a) PB92-216035² - Technology Evaluation Vol. 11 (EPA/540/5-91/007b) PB92-216043² - Applications Analysis (EPA/540/A5-91/007) PB92-218791² - Technology Demo Summary (EPA/540/S5-91/007) ### Risk Reduction Engineering Laboratory - and IT Corporation Debris Washing System - Technology Evaluation -Vol. 1 (EPA/540/5-91/006a) PB91-231456² - Technology Evaluation Vol. 11 (EPA/540/5-91/006b) PB91-231464² - Technology Demo Summary
(EPA/540/S5-91/006)³ ### - and University of Cincinnati-Hydraulic Fracturing of Contaminated Soil - Demonstration Bulletin (EPA/540/MR-93/505)³ - Technology Evaluation and Applications Analysis Combined (EPA/540/R-93/505) PB94-100161² - Technology Demo Summary (EPA/540/SR-93/505)³ ### -and USDA-Forest Products Technology - Fungal Treatment Technology Demonstration Bulletin (EPA/540/MR-93/514)³ ### -Mobile Volume Reduction Unit at the Sand Creek Superfund Site Treatability Study Bulletin (EPA/540/MR-93/512)³ ### -Mobile Volume Reduction Unit at the Escambia Superfund Site • Treatability Study Bulletin (EPA/540/MR-93/511)3 #### -Volume Reduction Unit - Demonstration Bulletin (EPA/540/MR-93/508) - Applications Analysis (EPA/540/AR-93/508) - Technology Evaluation (EPA/540/R-93/508)³ PB94-136264² - Technology Demo Summary (EPA/540/SR-93/508) ### Rochem Separations Systems, Inc. - Disc Tube Modle Technology - Demonstration Bulletin (EPA/540/MR-96/507) - Capsule (EPA/540/R-96/507a) - Innovative Tech. Eval. Report (EPA/540/R-96/507) ### Roy F. Weston, Inc. ### -and IEG Technologies-Unterdruck-Verdampfer-Brunner Technology (UVB) Vacuum Vaporizing Well - Demonstration Bulletin (EPA/540/MR-95/500) - Capsule (EPA/540/R-95/500a) #### - Low Temperature Thermal Treatment (LT3) System - Demonstration Bulletin (EPA/540/MR-92/019)³ - Applications Analysis (EPA/540/AR-92/019) ### Sandia National Labs - In Situ Electrokinetic Extraction System • Demonstration Bulletin (EPA/540/MR-97/509) ### SBP Technologies, Inc. - Membrane Filtration and Bioremediation - Demonstration Bulletin (EPA/540/MR-92/014)³ - Applications Analysis (EPA/540/AR-92/014) # Silicate Technology Corporation (Now STC Omega) - Solidification/Stabilization of Organic/Inorganic Contaminants - Demonstration Bulletin (EPA/540/MR-92/010)³ - Applications Analysis (EPA/540/AR-92/010) PB93-172948² - Technology Evaluation (EPA/540/R-92/010) PB95-255709² - Technology Demo Summary (EPA/540/SR-92/010)³ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. Documents with a PB number are out of stock and must be ordered by that number at cost from: National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650 or 1-800-553-6847 ³ Out of stock ### Simplot, J.R. - Ex Situ Anaerobic Bioremediation Technology: TNT - Demonstration Bulletin (EPA/540/MR-95/529) - Capsule (EPA/540/R-95/529a) - Innovative Tech. Eval. Report (EPA/540/R-95/529) ### Simplot, J.R. - Ex-Situ Anaerobic Bioremediation System (The SABRE Process) - Demonstration Bulletin (EPA/540/MR-94/508) - Capsule (EPA/540/R-94/508a) - Innovative Tech. Eval. Report (EPA/540/R-94/508) #### Soiltech ATP Systems, Inc. ### -Aostra-SoilTech Anaerobic Thermal Process Demonstration Bulletin (EPA/540/MR-92/008) #### -SoilTech Anaerobic Thermal Processor Demonstration Bulletin (EPA/540/MR-92/078)³ ### Soliditech, Inc. - Solidification and Stabilization - Technology Evaluation -Vol. 1 (EPA/540/5-89/005a) PB90-191750² - Technology Evaluation Vol. 11 (EPA/540/5-89/005b) PB90-191768² - Applications Analysis (EPA/540/A5-89/005) PB91-129817² - Technology Demo Summary (EPA/540/S5-89/005)³ - Demonstration Bulletin (EPA/540/M5-89/005)³ #### Solucorp - Molecular Bonding System • Innovative Tech. Eval. Report (EPA/540/R-97/507) ### Sonotech, Inc. - Cello Pulse Combustion Burner System - Demonstration Bulletin (EPA/540/MR-95/502)³ - Capsule (EPA/540/R-95/502a) Innovative Tech. Eval. Report (EPA/540/R-95/502) ### TerraKleen Response Group, Inc. - Solvent **Extraction Treatment System** - Demonstration Bulletin (EPA/540/MR-94/521)³ - Capsule (EPA/540/R-94/521a) PB95-213617² #### Terra Vac, Inc. - In Situ Vacuum Extraction - Demonstration Bulletin (EPA/540/M5-89/003)³ - Technology Evaluation -Vol. 1 (EPA/540/5-89/003a) PB89-192025² - Technology Evaluation Vol. 11 (EPA/540/5-89/003b) PB89-1920332 - Applications Analysis (EPA/540/A5-89/003) - Technology Demo Summary (EPA/540/S5-89/003)³ ### Texaco, Inc. - Entrained-Bed Gasification Process - Demonstration Bulletin (EPA/540/MR-94/514) - Capsule (EPA/540/R-94/514a) - Innovative Tech. Eval. Report (EPA/540/R-94/514) #### Thorneco, Inc. - Enzyme - Activated Cellulose Technology Treatability Study Bulletin (EPA/540/MR-92/018)³ #### Toronto Harbour Commission - Soil Recycling **Treatment Train** - Demonstration Bulletin (EPA/540/MR-92/015) - Applications Analysis (EPA/540/AR-93/517) - Technology Evaluation (EPA/540/R-93/517) PB93-216067² - Technology Demo Summary (EPA/540/SR-93/517) ### Toxic Treatments USA, Inc. (Now NOVATERRA, Inc.) - In-Situ Steam/Hot Air Stripping - Demonstration Bulletin (EPA/540/M5-90/003) - Applications Analysis (EPA/540/A5-90/008) #### Ultrox, a Division of Zimpro Environmental, Inc. - UV **Ozone Treatment for Liquids** - Demonstration Bulletin (EPA/540/M5-89/012)³ - Applications Analysis (EPA/540/A5-89/012) PB91-129759² - Technology Evaluation (EPA/540/5-89/012) PB90-198177² - Technology Demo Summary (EPA/540/S5-89/012)³ ### U.S. EPA - McColl Superfund Site - Demonstration of a **Trial Excavation** - Technology Evaluation (EPA/540/R-92/015) PB92-226448²² - Applications Analysis (EPA/540/AR-92/015) PB93-100121² - Technology Demo Summary (EPA/540/SR-92/015) ### Wheelabrator Clean Air Systems, Inc. (formerly Chemical Waste Management, Inc.) - PO*WW*ERTM **Technology** - Demonstration Bulletin (EPA/540/MR-93/506)³ - Applications Analysis (EPA/540/AR-93/506) - Technology Evaluation -Vol. 1 (EPA/540/R-93/506a) PB94-160637² - Technology Evaluation Vol. 11(EPA/540/R-93/506b) PB94-160660² - Technology Demo Summary (EPA/540/SR-93/506) #### Zenon Environmental, Inc. - Zenon Cross-FlowPervaporation Technology - Demonstration Bulletin (EPA/540/MR-95/511) - Capsule (EPA/540/R-95/511a) #### Zenon Environmental Systems - Zenogem Wastewater **Treatment Process** - Demonstration Bulletin (EPA/540/MR-95/503)³ - Capsule (EPA/540/R-95/503a)³ 3 Out of stock must be ordered by that number at cost from: ### **Emerging Technologies Program Reports** #### General Publications SITE Emerging Technology Program (Brochure) (EPA/540/F-95/502) ### ABB Environmental Services, Inc. - Two Zone PCE Bioremediation System • Emerging Tech. Bulletin (EPA/540/F-95/510) ### Aluminum Company of America - Bioscrubber for Removing Hazardous Organic Emission from Soil, Water, and Air Decontamination Process - Emerging Tech. Bulletin (EPA/540/F-93/507)³ - Emerging Tech. Summary (EPA/540/SR-93/521)³ - Emerging Tech. Report (EPA/540/R-93/521) PB93-227025² - Journal Article AWMA Vol. 44, No. 3, March 1994 ### Atomic Energy of Canada, Limited - Chemical Treatment and Ultrafiltration Emerging Tech. Bulletin (EPA/540/F-92/002)³ ### Babcock & Wilcox Co. - Cyclone Furace (Soil Vitrification) - Emerging Tech. Bulletin (EPA/540/F-92/010) - Emerging Tech. Summary (EPA/540/SR-93/507) - Emerging Tech. Report (EPA/540/R-93/507) PB93-163038² ### **Batelle Memorial Institute - In Situ Elecroacoustic**Soil Decontamination - Emerging Tech. Bulletin (EPA/540/S5-90/004)³ - Emerging Tech. Report (EPA/540/5-90/004) PB90-204728² ### Bio-Recovery Systems Inc. - Removal and Recovery of Metal Ions from Groundwater (AlgaSORB) - Emerging Tech. Bulletin (EPA/540/F-92/003)³ - Emerging Tech. Summary (EPA/540/S5-90/005)³ - Emerging Tech. Report (EPA/540/5-90/005a) PB90-252594² - Emerging Tech. Report Appendices (EPA/540/5-90/005b) PB90-252602² #### Biotrol, Inc. - Mehanotophic Bioreator System - Emerging Tech. Bulletin (EPA/540/F-93/506)³ - Emerging Tech. Summary (EPA/540/SR-93/505)³ - Journal Article AWMA Vol. 45, No.1, Jan. 1995 # Center for Hazardous Materials Research -Acid Extraction Treatment System for Treatment of Metal Contaminated Soils Emerging Tech. Summary (EPA/540/SR-94/513)³ Emerging Tech. Report (EPA/540/R-94/513) PB94-188109² ### -Simulatanious Destruction of Organics and Stabilization of Metals in Soils - Emerging Tech. Summary (EPA/540/SR-98/500) - Emerging Tech. Report (EPA/540/R-98/500) PB98-133150 ### -Reclamation of Lead from Superfund Waste Material Using Secondary Lead Smelters - Emerging Tech. Bulletin (EPA/540/F-94/510) - Emerging Tech. Summary (EPA/540/SR-95/504) - Emerging Tech. Report (EPA/540/R-95/504) PB95-199022² ### Colorado School of Mines - Constructed Wetlands-Based Treatment - Emerging Tech. Bulletin (EPA/540/F-92/001)3 - Emerging Tech. Summary (EPA/540/SR-93/523) - Emerging Tech. Report (EPA/540/R-93/523) PB93-233914² # University of Dayton Research Institute - Development of a Photothermal Detoxification Unit - Emerging Tech. Bulletin (EPA/540/F-95/505)³ - Emerging Tech. Summary (EPA/540/SR-95/526)³ - Emerging Tech. Report (EPA/540/R-95/526) PB95-255733² ## Electro-Pure Systems, Inc. - Alternating Current Electyrocoagulation Technology - Emerging Tech. Bulletin (EPA/540/F-92/011)³ - Emerging Tech Summary (EPA/540/S-93/504)³ - Journal Article AWMA Vol 43, No.5, May 1993 # Electokinetics Inc. - Theoretical and Experimental Modeling of Multispecies...Electrokinetic Soil Processing - Emerging Tech. Bulletin (EPA/540/F-95/504) - Emerging Tech. Summary (EPA/600/SR-97/054) - Emerging Tech. Report (EPA/600/R-97/054) PB97-193056² #### Energy and Environmental Engineering - Laser-Induced Photochemical Oxidative Destruction - Emerging Tech. Bulletin (EPA/540/F-92/004) - Emerging Tech. Summary (EPA/540/SR-92/080) Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. Documents with a PB number are out of stock and must be ordered by that number at cost from: National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650 or 1-800-553-6847 ³ Out of stock Emerging Tech. Report (EPA/540/R-92/080) PB93-131431² ### Energy and Environmental Research Corporation -Hybrid Fluidized Bed System • Emerging Tech. Bulletin (EPA/540/F-93/508) ### FERRO Corporation - Waste Vitrification Through
Electric Melting • Emerging Tech. Bulletin (EPA/540/F-95/503) ### Florida International University (or Electron Beam Research Facility) - -Electron Beam Treatment for Removal of Benzene and Toluene from Aqueous Streams and Sludge - Emerging Tech. Bulletin (EPA/540/F-93/502)3 ## -Electron Beam Treatment for the Trichloroethylene and Tetrachloroethylene from Aqueous Stream • Emerging Tech. Bulletin (EPA/540/F-92/009)3 ### -Removal of Phenol from Aqueous Solutions Using High Energy Electron Beam Irradation • Emerging Tech. Bulletin (EPA/540/F-93/509)³ #### Institute of Gas Technology - -Chemical and Biological Treatment (CBT) - Emerging Tech. Bulletin (EPA/540/F-94/504)³ ### -Fluid Extraction-Biological Degradation Process Emerging Tech. Summary (EPA/540/F-94/501)³ ### IT Corporation - Innovative Methods for Bioslurry Treatment - Emerging Tech. Bulletin (EPA/540/F-96/505) - Emerging Tech. Summary (EPA/540/SR-96/505) - Emerging Tech. Report (EPA/540/ R-96/505) PB97-176820² ### IT Corporation - Photolysis/Biodegradation of PCB and PCDD/PCDF Contaminated Soils - Emerging Tech. Bulletin (EPA/540/F-94/502) - Emerging Tech. Summary (EPA/540/SR-94/531) - Emerging Tech. Report (EPA/540/R-94/531) PB95-159992² #### IT Corporation - Process for the Treatment of Volatile Organic Carbon & Heavy-Metal Contaminated Soil • Emerging Tech. Bulletin (EPA/540/F-95/509) ### J.R. Simplot - Anaerobic Destruction of Nitroaromatics (the SABRE Process) Journal Article App. Env. Micro, Vol.58, No. 5, May 1992, pp. 1683-89 ### Matrix Photocatalitic, Inc. - Photocatalytic Water Treatment Published Paper (EPA/600/A-93/282) PB94-130184² ### Membrane Technology and Research, Inc. - Volatile Organic Compound Removal from Air Streams by Membrane Separation • Emerging Tech. Bulletin (EPA/540/F-94/503) ### M.L. Energia - Reductive Photo-Dechlorination Process for Safe Conversion of Hazardous Chlorocarbon Waste Streams • Emerging Tech. Bulletin (EPA/540/F-94/508) ### New Jersey Institute of Technology - GHEA Associates Process for Soil Washing and Wastewater Treatment • Emerging Tech. Bulletin (EPA/540/F-94/509) # PURUS, Inc. - Photolytic Oxidation Process [Destruction of Organic Contaminants in Air Using Advanced Ultraviolet Flashlamps] - Emerging Tech. Bulletin (EPA/540/F-93/501)³ - Emerging Tech. Summary (EPA/540/SR-93/516)³ - Emerging Tech. Report (EPA/540/ R-93/516) PB93-205383² ### Roy F. Weston, Inc. - Ambersorb 563 Adsorbent - Emerging Tech. Bulletin (EPA/540/F-95/500) - Emerging Tech. Summary (EPA/540/SR-95/516) - Emerging Tech. Report (EPA/540/R-95/516) PB95-264164² ### University of Washington - Metals Treatment at Superfund Sites by Adsorptive Filtration - Emerging Tech. Bulletin (EPA/540/F-92/008)³ - Emerging Tech. Summary (EPA/540/SR-93/515)³ - Emerging Tech. Report (EPA/540/ R-93/515) PB93-231165² #### **Vortec Corporation - Vitrification** - Published Paper, Glass Production Technol International, 1994, p. 103 - 106 - Emerging Tech. Summary (EPA/540/S-97/501)⁴ ### Wastewater Technology Centre - [A] Cross-Flow Pervaporation System [for Removal of VOC's from Contaminated Water] - Emerging Tech. Bulletin (EPA/540/F-93/503)³ - Emerging Tech. Summary (EPA/540/SR-94/512)³ - Emerging Tech. Report (EPA/540/R-94/512) PB94-170230² ### Measuring and Monitoring Program Reports #### **Cone Penetrometers** #### Loral Rapid Optical Screening Tool (ROST) - Demonstration Bulletin (EPA/540/MR-95/519) - Innovative Tech. Eval. Report (EPA/540/R-95/519) ### Site Characterization Analysis Penetrometer System (SCAPS) - Demonstration Bulletin (EPA/540/MR-95/520) - Innovative Tech. Eval. Report (EPA/540/R-95/520) ### Field Portable X-Ray Fluorescence ### HNU Systems SEFA-P Field Portable X-ray Fluorescence • Innovative Tech. Eval. Report (EPA/600/R-97/144) ### Metorex X-Met 920P and 940 Field Portable X-ray Fluorescence Innovative Tech. Eval. Report (EPA/600/R-97/146) ### Metorex X-Met 920MP Field Portable X-ray Fluorescence • Innovative Tech. Eval. Report (EPA/600/R-97/151) #### Niton XL Spectrum Field Portable X-ray Fluorescence Innovative Tech. Eval. Report (EPA/600/R-97/150) ### SciTec MAP Spectrum Field Portable X-ray Fluorescence • Innovative Tech. Eval. Report (EPA/600/R-97/147) ### TN Spectrace TN9000 and TN Pb Field Portable X-ray Fluorescence Analyzers Innovative Tech. Eval. Report (EPA/600/R-97/145) ### Portable Gas Chromatographs ### Analytical & Remedial Technology Purge and Trap Gas Chromatographic Manifod System (AVOS) Technology Evaluation Report (EPA/600/R-93/109) ### **Bruker Mobiel Environmental Monitor** Technology Evaluation Report (EPA/600/X-91/079) ### Field Analytical Screening Program (FASP) Method for PCP - Demonstration Bulletin (EPA/540/R-95/528) - Innovative Tech. Eval. Report (EPA/540/MR-95/528) ### Field Analytical Screening Program (FASP) Method for PCB - Demonstration Bulletin (EPA/540/R-95/521) - Innovative Tech. Eval. Report (EPA/540/MR-95/521) #### HNU Portable Gas Chromatograph Results reported in the Proceedings of the U.S. EPA Third International Field Screening Symposium Volume 2, Pages 682-693 (1993) #### Photovac Portable Gas Chromatograph Results reported in the Proceedings of the U.S. EPA Third International Field Screening Symposium Volume 2, Pages 682-693 (1993) ### Sentex Portable Gas Chromatograph Results reported in the Proceedings of the U.S. EPA Third International Field Screening Symposium Volume 2, Pages 682-693 (1993) ### SRI Instruments Low Temperature Thermal Desorption System Results reported in the Proceedings of the U.S. EPA Third International Field Screening Symposium Volume 2, Pages 682-693 (1993) #### **Spectrometers** ## MDA Scientific Long-Path Fourier Transform Infrared Spectrometer Technology Evaluation Report (EPA/600/S3-91/071) ### Xontech, Inc. Canister-based Sector Sample Report (EPA/600/S3-91/071) ### PCP/PCB Immunoassay Test Kits #### Char-N-Soil PCB Test Kit - Dexel - Demonstration Bulletin (EPA/540/MR-95/518) - Innovative Tech. Eval. Report (EPA/540/ R-95/518) #### EnviroGard PCB Test Kit - Millipore Inc. - Demonstration Bulletin (EPA/540/MR-95/517) - Innovative Tech. Eval. Report (EPA/540/ R-95/517) ¹Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562 or Fax 513-569-8695. ²Documents with a PR number are out of steel on ²Documents with a PB number are out of stock and must be ordered by that number at cost from: ### Millipore Immunoasay Test Kit for PCB - Demonstration Bulletin (EPA/540/MR-95/517) - Innovative Tech. Eval. Report (EPA/540/ R-95/517) ### PCP Immunoassay Technologies: Ensys Inc. - PENTA Risc: Ohmicron Corp., - Penta RaPid; Millipore Inc. -Envirogard - Demonstration Bulletin (EPA/540/MR-95/515) - Innovative Tech. Eval. Report (EPA/540/ R-95/514) ### **U-Hanby PCP Test Kit** - Demonstration Bulletin (EPA/540/MR-95/515) - Innovative Tech. Eval. Report (EPA/540/ R-95/515) #### Westinghouse PCP Test Kit Technology Evaluation Report (EPA/600/X-90/146) ### Soil & Soil Gas Samples ### Art's Manufacturing Soil Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/093) #### Clements & Associates Soil Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/097) ### Geoprobe® Soil Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/092) #### Simulprobe® Soil Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/094) #### Quandrel Soil Gas Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/096) ### W.L. Gore & Associates Soil Gas Sampler • Innovative Tech. Eval. Report (EPA/600/R-98/095) must be ordered by that number at cost from: 3 Out of stock ### Appendix D ### **ELECTRONIC TECHNICAL INFORMATION RESOURCES** ### CONTENTS | <u>Section</u> | <u>Page</u> | |---|--------------------------| | REMEDIATION TECHNOLOGIES | D-3 | | Electronic Information Sources | D-3 | | Alternative Treatment Technology Information Center (ATTIC) | D-3
D-3 | | Completed North American Innovative Remediation Technology Demonstration Projects Database | D-3
D-3 | | Innovative Treatment Technologies: Annual Status Report (Ninth Edition) and REACHIT Online System | D-4 | | TechDirect | D-4 | | Programs, Partnerships, And Organizations | D-4 | | EPA Library Network Program Federal Remediation Technologies Roundtable (FRTR) Ground-Water Remediation Technologies Analysis Center (GWRTAC) Office of Research and Development (ORD) Remediation Technologies Development Forum (RTDF) Superfund Innovative Technology Evaluation (SITE) Demonstration Program Technology Innovation Office (TIO) | D-4
D-4
D-4
D-5 | | SITE CHARACTERIZATION TECHNOLOGIES | D-5 | | Electronic Sources of Information | D-5 | | EPA, National Exposure Research Laboratory - Hazardous Waste Site Characterization (on CD-ROM) (EPA 600-C-96-001) Field Sampling and Analysis Technologies Matrix Hazardous Waste Clean-Up Information (CLU-IN) Home Page TechDirect | D-5 | | Programs, Partnerships, and Organizations | D-6 | | Consortium for Site Characterization and Technology (CSCT) | D-6 | | Superfund Innovative Technology Evaluation (SITE) Demonstration Program | D-6 | # EPA Sources of Information on Innovative Remediation and Site Characterization Technologies Listed below are U.S. Environmental Protection Agency (EPA) sources of information on Innovative Remediation and Site Characterization Technologies. Sources of information include: electronic information sources in the form of databases or Internet sites, as well as programs, partnerships and organizations accessible on the Internet. #### REMEDIATION TECHNOLOGIES #### Electronic Information Sources **Alternative Treatment Technology Information** Center (ATTIC). The Alternative
Treatment Technology Information Center (ATTIC) is a comprehensive computer database system that provides up-to-date information about innovative treatment technologies. The database contains information about biological, chemical, and physical treatment processes; solidification and stabilization processes: and thermal treatment technologies. The on-line automated bibliographic reference integrates existing data on hazardous waste into a unified searchable resource. The ATTIC system provides users with access to several independent databases. an electronic bulletin board system, a hotline, and a repository of publications related to alternative and innovative treatment technologies. The ATTIC database can be accessed through the Internet at http://www.epa.gov/attic or by modem at (703) 908-2138. Assistance can be reached by telephone at (703) 908-2137. Bioremediation in the Field Search System (BFSS) Version 2.1. BFSS is a PC-based searchable database of information about sites at which bioremediation is being tested or implemented or at which cleanup by bioremediation has been completed. The database covers sites being addressed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), as well as those being addressed under the Underground Storage Tank (UST) Program. Information is available about location, media, contaminants, technology, cost and performance. BFSS can be downloaded free of charge from the ATTIC or the Hazardous Waste Clean-Up Information (CLU-IN) Internet sites at <clu-in.org>. Completed North American Innovative Remediation Technology Demonstration Projects Database. The searchable database contains information about more than 300 completed innovative technology field demonstration projects in North America. The purpose of the database is to consolidate key information from innovative demonstration projects into a single source and present that information in a format that enables the user to easily identify innovative technologies that may be appropriate to the user's particular site remediation needs. The database, which is limited to completed demonstration projects and a small number of full-scale cleanup efforts, does not include emerging technologies or laboratory-scale projects. The database can be downloaded free of charge from the CLU-IN Internet site at http://clu-in.org>. **Hazardous Waste Clean-Up Information (CLU-IN)** Home Page. CLU-IN is a streamlined source of information about innovative remediation and site characterization technologies for hazardous waste cleanup professionals. It provides access to information about programs, organizations. publications, and other tools for EPA and other Federal and State personnel, consulting engineers, technology developers and venders, remediation contractors, researchers, community groups, and individual citizens. Access to various pools of information is presented in the form of downloadable publications and databases. Sources of additional information on the Internet also are presented through a series of links. CLU-IN is sponsored by EPA's Technology Innovation Office (TIO). For additional information about the CLU-IN home page, call (301) 589-8368. CLU-IN can be accessed through the Internet at <http://clu-in.org>. Innovative Treatment Technologies: Annual Status Report (Ninth Edition) This contains information about remedies selected at contaminated waste sites. The sites include Superfund remedial and removal sites and some non-Superfund sites being remediated by the U.S. Department of Energy (DOE), the U.S. Department of Defense (DoD), or under the RCRA corrective action program. The EPA REACHIT online system database includes such site-specific data as contaminants and media treated, project status, and site contact. If you have questions or comments about the system, please call EPA's TIO at (703) 603-9910. The database can be downloaded free of charge from the CLU-IN Internet site at http://clu-in.org. To obtain a copy of the report, call EPA's National Center for Environmental Publications and Information (NCEPI) at (800) 490-9198 or (513) 489-8190. **Remediation Technologies Screening Matrix and** Reference Guide, Version 3.0. The Remediation Technologies Screening Matrix and Reference Guide, Version 3.0, prepared for federal agencies participating on the Federal Remediation Technology Roundtable (FRTR), provides a "yellow pages" of remediation technologies information. The guide is intended to assist remedial project managers (RPM) to screen and evaluate candidate cleanup technologies and select the best remedial alternative(s) for contaminated installations. facilities. or waste sites. The guide also assists environmental professionals in gathering essential descriptive information on the respective technologies. The guide incorporates cost and performance data to the maximum extent available and focuses primarily on demonstrated technologies. However, information on emerging technologies also is included in the guide. The guide can be accessed through the Internet at < http://www.frtr.gov>. TechDirect. TechDirect, hosted by EPA's TIO, is an information service that highlights new publications and events of interest to environmental professionals. Information about site characterization and remediation technologies is available through this Internet subscription service. Approximately once a month, the service distributes by electronic mail a message describing the availability of publications and announcements of events. For publications, the message explains how to obtain a hard copy or how to download an electronic version from the Internet. For additional information about TechDirect, contact Jeff Heimermann at (703) 603-7191 or by E-mail at heimerman.jeff@epamail.epa.gov. TechDirect can be accessed through the Internet at http://clu-in.org/membersh.htm. ### Programs, Partnerships, And Organizations EPA Library Network Program. The EPA National Library Network Program is a repository of information from EPA's Headquarters, Regional and Field Offices, Research Centers, and specialized laboratories throughout the country. The Library Network provides access to its collection through the On-line Library System (OLS), a menu-driven database of the library's holdings. The OLS provides users with the ability to perform online searches by author, title, or keyword. The EPA National Library Network Program can be accessed through the Internet at http://www.epa.gov/natlibra. Federal Remediation Technologies Roundtable (FRTR). FRTR is an interagency working group that provides a forum for the exchange of information regarding the development and demonstration of innovative technologies for the remediation of hazardous waste sites. The forum also synthesizes the technical knowledge that Federal Agencies have compiled and provides a more comprehensive record of performance and cost of the technologies. Participating agencies include DoD, the U.S. Army Corps of Engineers, the U.S. Navy, the U.S. Air Force, DOE, the U.S. Department of the Interior, and EPA. FRTR can be accessed through the Internet at http://www.frtr.gov. Ground-Water Remediation Technologies Analysis Center (GWRTAC). GWRTAC was established through a cooperative agreement between the National Environmental Technology Applications Center (NETAC) of the Center for Hazardous Materials Research (CHMR) and EPA. The goal of GWRTAC is to compile, analyze, and disseminate information about innovative ground-water remediation technologies to industry, the research community, contractors, government, investors, and the public. The center currently is compiling information to be included in databases of interactive case studies and vendor information that will be available on the GWRTAC Internet site. GWRTAC can be accessed through the Internet at http://www.gwrtac.org. Office of Research and Development (ORD). ORD, under the Assistant Administrator, Norine E. Noonan, Ph. D., is the scientific and technological arm of EPA. Comprised of three headquarters offices, three national research laboratories and two national centers. ORD is organized around a basic strategy of risk assessment and risk assessment management to remediate environmental and human health problems. ORD focuses on the advancement of basic peerreviewed scientific research and the implementation of cost-effective, common sense technology. Fundamental to ORD's mission is a partnership with the academic scientific community through extramural research grants and fellowships to help develop the sound environmental research necessary to ensure effective policy and regulatory decisions. ORD also implements such programs as the Superfund Innovative Technology Evaluation (SITE) program which focuses on treatment technologies and EPA's Environmental Technology Verification Program (ETV) which focuses on site characterization technologies. ORD can be accessed through the Internet at . Remediation Technologies Development Forum (RTDF). RTDF was established by EPA to foster public-private partnerships that would conduct laboratory and applied research to develop, test, and evaluate innovative remediation technologies. RTDF's home page provides access to information about various remediation technologies currently being designed, developed and evaluated through seven action teams of RTDF including: the Bioremediation of Chlorinated Solvents Consortium. the LASAGNA™ Partnership, the Permeable Reactive Barriers Action Team, the Sediments Remediation Action Team, the In-Place Inactivation and Natural
Ecological Restoration Technologies (IINERT) Soil-Metals Action Team, the Phytoremediation of Organics Action Team, and the In Situ Flushing Action Team. RTDF can be accessed through the Internet at <http://www.rtdf.org>. **Superfund Innovative Technology Evaluation** (SITE) Demonstration Program. The SITE Demonstration program was established by EPA's Office of Solid Waste and Emergency Response and the Office of Research and Development to encourage the development and implementation of innovative treatment technologies for the remediation of hazardous waste sites, and monitoring and measurement. Through the program, technologies are field-tested on hazardous waste materials and engineering and cost data are gathered on the innovative technology so that potential users can assess the technology's applicability to a particular site. Data collected during the field demonstrations are used to assess the performance of the technology, the potential need for pre- and postprocessing of the waste, applicable types of wastes and waste matrices, potential operating problems, and approximate capital and operating costs. The collected information is then provided in a Innovative Technology Evaluation Report, Technology Capsule, and Demonstration Bulletin. These reports evaluate all available information on the technology and analyze its overall applicability to other site characteristics, waste types, and waste matrices. Testing procedures, performance and cost data, and quality assurance and quality standards also are presented. The SITE Demonstration program can be accessed through the Internet at http://www.epa.gov/ORD/SITE. Technology Innovation Office (TIO). The U.S. Environmental Protection Agency's (EPA) TIO was created in 1990 to act as an advocate for new technologies. TIO's mission is to increase the application of innovative treatment technologies to contaminated waste sites, soils, and groundwater. To meet that mission, TIO has expanded its focus from treatment technologies to include site characterization technologies in order to improve the remediation process. TIO has encouraged and relied on cooperative ventures with other partners to accomplish many of its goals. This effort to effectively use resources has led to numerous joint efforts that have enhanced the state of both remediation and site characterization. For additional information about TIO, contact Jeff Heimerman of EPA's TIO at (703) 603-7191. TIO can be accessed through the Internet at http://clu-in.org/tiomiss.htm. ### SITE CHARACTERIZATION TECHNOLOGIES #### Electronic Sources of Information EPA, National Exposure Research Laboratory -Hazardous Waste Site Characterization (on CD-ROM) (EPA 600-C-96-001). The Hazardous Waste Site Characterization CD-ROM, developed by NERL's ESD-LV, compiles guidance documents and related software to aid environmental professionals in the complex, multidisciplinary, characterizing of hazardous waste sites. The CD-ROM is a compilation of computer programs related to EPA's RCRA and Superfund programs that can be printed, as well as searched by key words. Using the CD-ROM requires a personal computer with DOS Version 3.0 or higher, 640K of Ram, and 3 MB of hard disk space. A math co-processor is recommended but not required. The CD-ROM can be ordered on-line through the NTIS Internet site at <www.ntis.gov>. Field Sampling and Analysis Technologies Matrix. The Matrix, developed by participating agencies of the Federal Remediation Technologies Roundtable (FRTR), is a matrix and reference guide that is intended to provide users with an understanding of the site characterization technologies available to them and the applicability of various technologies to their particular problem(s). The Matrix provides a general understanding of state-of-the-art technologies for site characterization. The Matrix and reference guide also enhances technology information transfer and provides much needed comparison among competing technologies. The Matrix can be accessed through the Internet at http://www.frtr.gov/site. Hazardous Waste Clean-Up Information (CLU-IN) Home Page. CLU-IN is a streamlined source of information about innovative remediation and site characterization technologies for hazardous waste cleanup professionals. It provides access to information about programs, organizations, publications, and other tools for EPA and other Federal and State personnel, consulting engineers, technology developers and venders, remediation contractors, researchers, community groups, and individual citizens. Access to various tools of information is presented in the form of downloadable publications and databases. Sources of additional information on the Internet also are presented through a series of links. CLU-IN is sponsored by EPA's Technology Innovation Office (TIO). For additional information about the CLU-IN home page, call (301) 589-8368. CLU-IN can be accessed through the Internet at http://clu-in.org. TechDirect. TechDirect, hosted by EPA's TIO, is an information service that highlights new publications and events of interest to environmental professionals. Information about site characterization and remediation technologies are available through this Internet subscription service. Approximately once a month, the service distributes by electronic mail a message describing the availability of publications and announcements of events. For publications, the message explains how to obtain a hard copy or how to download an electronic version from the Internet. For additional information about TechDirect, contact Jeff Heimermann at (703) 603-7191 or by E-mail at heimerman.jeff@epamail.epa.gov. TechDirect can be accessed through the Internet at http://clu-in.org/membersh.htm>. ### Programs, Partnerships, and Organizations **Consortium for Site Characterization and** Technology (CSCT). CSCT was established as one of 10 pilot projects currently implemented by EPA's Environmental Technology Verification (ETV) Program. The CSCT is a partnership program among the U.S. Environmental Protection Agency (EPA), the U.S. Department of Defense (DoD), and the U.S. Department of Energy (DOE) that is responsible for evaluating and verifying the performance of innovative site characterization technologies. The CSCT provides support to technology developers, evaluates and verifies data generated during demonstrations, and develops and disseminates information about the performance of site characterization technologies. CSCT can be accessed through the Internet at < http://cluin.org/csct.htm>. Environmental Technology Verification Program. The ETV program seeks to provide credible performance data on environmental technologies from independent third parties under the auspices of EPA. It verifies the performance of innovative technical solutions to problems that threaten human health or the environment. Managed by EPA's ORD, ETV was created to substantially accelerate the entrance of new environmental technologies into domestic and international marketplaces. It supplies buyers of technologies, developers of those technologies, consulting engineers, states, and EPA regions with high-quality data on the performance of new technologies. ETV expands on past verification efforts, such as those conducted under the SITE program for remediation technologies. ETV currently implements 10 pilot projects, including the Consortium for Site Characterization Technology (CSCT). The ETV program can be accessed through the Internet at http://www.epa.gov/etv. EPA Library Network Program. The EPA National Library Network Program is a repository of information from EPA's Headquarters, Regional and Field Offices, Research Centers, and specialized laboratories throughout the country. The Library Network provides access to its collection through the On-line Library System (OLS), a menu-driven database of the library's holdings. The OLS provides users with the ability to perform online searches by author, title, or keyword. The material on OLS is updated every two weeks. The EPA National Library Network Program can be accessed through the Internet at http://www.epa.gov/natlibra. Office of Research and Development (ORD). ORD, under the Assistant Administrator. Norine E. Noonan. Ph. D., is the scientific and technological arm of EPA. Comprised of three headquarters offices, three national research laboratories and two national centers, ORD is organized around a basic strategy of risk assessment and risk assessment management to remediate environmental and human health problems. ORD focuses on the advancement of basic peerreviewed scientific research and the implementation of cost-effective, common sense technology. Fundamental to ORD's mission is a partnership with the academic scientific community through extramural research grants and fellowships to help develop the sound environmental research necessary to ensure effective policy and regulatory decisions. ORD also implements such programs as the Superfund Innovative Technology Evaluation (SITE) program which focuses on treatment technologies and EPA's Environmental Technology Verification Program (ETV) which focuses on site characterization technologies. ORD can be accessed through the Internet at . Superfund Innovative Technology Evaluation (SITE) Demonstration Program. The SITE Demonstration program was established by EPA's Office of Solid Waste and Emergency Response and the Office of Research and Development to encourage the development and implementation of innovative treatment technologies for the remediation of hazardous waste sites, and monitoring and measurement. Through the program, technologies are
field-tested on hazardous waste materials and engineering and cost data are gathered on the innovative technology so that potential users can assess the technology's applicability to a particular site. Data collected during the field demonstrations are used to assess the performance of the technology, the potential need for pre- and postprocessing of the waste, applicable types of wastes and waste matrices, potential operating problems. and approximate capital and operating costs. The collected information is then provided in a Innovative Technology Evaluation Report, Technology Capsule. and Demonstration Bulletin. These reports evaluate all available information on the technology and analyze its overall applicability to other site characteristics, waste types, and waste matrices. Testing procedures, performance and cost data, and quality assurance and quality standards also are presented. The SITE Demonstration program can be accessed through the Internet at <http://www.epa.gov/ORD/SITE>. Technology Innovation Office (TIO). The U.S. Environmental Protection Agency's (EPA) TIO was created in 1990 to act as an advocate for new technologies. TIO's mission is to increase the application of innovative treatment technologies to contaminated waste sites, soils, and groundwater. To Meet that mission, TIO has expanded its focus from treatment technologies to include site characterization technologies in order to improve the remediation process. TIO has encouraged and relied on cooperative ventures with other partners to accomplish many of its goals. This effort to effectively use resources has led to numerous joint efforts that have enhanced the state of both remediation and site characterization. For additional information about TIO. contact Jeff Heimerman of EPA's TIO at (703) 603-7191. TIO can be accessed through the Internet at . | | | | • | |--|---|--|---| , | | | | | | | | | | | | | | | | | | . United States Environmental Protection Agency Center for Environmental Research Information Cincinnati, OH 45268 Official Business Penalty for Private Use \$300 EPA/540/R-99/504 Please make all necessary changes on the below label, detach or copy, and return to the address in the upper left-hand corner. If you do not wish to receive these reports CHECK HERE \square ; detach, or copy this cover, and return to the address in the upper left-hand corner. PRESORTED STANDARD POSTAGE & FEES PAID EPA PERMIT No. G-35